MicroGeniusS2/S4

Automatic Battery Charger/Power Supply

Installation & Operation Manual

SENS Part Number: 101330 **Document Revision:** Κ DCN Number: Date:

108223 July 15, 2022

PATENTED US 9,270,140; 9,385,556; 9,413,186; 9,509,164; 9,466,995; 9,948,125

Installation or service questions? Call SENS between 8 a.m. and 5 p.m. (Mountain Time), Monday through Friday, or visit our website.

Copyright © Stored Energy Systems LLC 2018 The SENS name / logo, MicroGenius, HELIX, and Dynamic Boost are trademarks of Stored Energy Systems LLC

TABLE OF CONTENTS

			~
1		RTANT SAFETY INSTRUCTIONS FOR INSTALLER AND OPERATOR	
2			
3			
4			-
5		NTING INSTRUCTIONS	
	5.1.	Mounting Location	
~	5.2.	Mounting Instructions	
6		P AND WIRING	
	6.1.	Wire Ratings and Sizes	
	6.2.	Grounding Instructions and Connection	
	6.3.	DC Connection	
	6.4.	AC Connection	
	6.5.	Alarm Connections	
	6.6.	Remote Temperature Sensor Connection—Optional	
	6.7.	SAE J1939 Communications Setup (CANbus)	
	6.8.	Modbus Communications Setup	
	6.9.	Load Share Connection—Optional	
	6.10.	Remote Alarm/Communications Panel Accessory Connection—Optional	
_	6.11.	Verify Connections	
7		I-UP PROCEDURE	
	7.1.	Connect Battery/Outputs	
	7.2.	Verify Configuration	
	7.3.	Apply AC Input Voltage	
	7.4.	Power Off	-
8		MS, LEDS AND DISPLAY	
	8.1.	LED Indicators	
	8.2.	Individual Alarm Relay Contacts	
	8.3.	LCD Panel	
	8.4.	Alarm Definitions	
9		ATION	
	9.1.	Charging Algorithms	
	9.2.	Float Mode	
	9.3.	Dynamic Boost™ Mode	
	9.4.	HELIX Mode	
	9.5.	Ultracapacitor Mode	
	9.6.	Charging Low or Zero-volt Batteries	
	9.7.	Commissioning Batteries	
	9.8.	Battery Check	
	9.9.	Restore Factory Defaults	
	9.10.	Keypad Operation	
	9.11.		40
	9.12.	Temperature Compensation	
	9.13.	Load Share Charger Operation	
	9.14.	Remote Alarm/Communications Panel Accessory	42
10	J1939	COMMUNICATIONS	42
	10.1.	J1939 Data Messages	42
11	MOD	BUS COMMUNICATIONS	
	11.1.	TCP/IP Modbus	
	11.2.	Modbus Holding Registers	44
	11.3.	Alarm Bit Definition	52
	11.4.	Extended Status Bit Definition	
	11.5.	Writable Control Flags (Coils)	54
12	TROU	BLESHOOTING/ERROR CODES	55
	12.1.	Configuration Error Codes	55
	12.2.	Troubleshooting	57
13	GLOS	SARY	61

1 IMPORTANT SAFETY INSTRUCTIONS FOR INSTALLER AND OPERATOR

- 1.1. SAVE THESE INSTRUCTIONS This manual contains important safety and operating instructions for MicroGenius[®] S2 and S4 battery chargers.
- 1.2. Before using battery charger, read all instructions and cautionary markings on battery charger, battery, and product using battery.
- 1.3. Do not expose charger to rain or snow.
- 1.4. Use of an attachment not recommended or sold by the battery charger manufacturer may result in a risk of fire, electric shock, or injury to persons.
- 1.5. This charger is intended for commercial and industrial use. ONLY TRAINED AND QUALIFIED PERSONNEL MAY INSTALL AND SERVICE THIS UNIT.
- 1.6. Do not operate charger if it has received a sharp blow, been dropped, or otherwise damaged in any way; shut off power at the branch circuit protectors and have the unit serviced or replaced by qualified personnel.
- 1.7. To reduce risk of electric shock, disconnect the branch circuit feeding the charger before attempting any maintenance or cleaning. Turning off controls will not reduce this risk.

1.8. WARNING - RISK OF EXPLOSIVE GASES

- 1.8.1. WORKING IN THE VICINITY OF A LEAD-ACID OR NICKEL-CADMIUM BATTERY IS DANGEROUS. STORAGE BATTERIES GENERATE EXPLOSIVE GASES DURING NORMAL BATTERY OPERATION. FOR THIS REASON, IT IS OF UTMOST IMPORTANCE THAT YOU READ THIS MANUAL AND FOLLOW THE INSTRUCTIONS EACH TIME YOU USE THE CHARGER.
- 1.8.2. To reduce the risk of battery explosion, follow these instructions and those published by the battery manufacturer and the manufacturer of any equipment you intend to use in the vicinity of a battery. Review cautionary markings on these products and on the engine.

1.9. PERSONAL PRECAUTIONS

- 1.9.1. Someone should be within range of your voice or close enough to come to your aid when you work near a storage battery.
- 1.9.2. Have plenty of fresh water and soap nearby in case battery electrolyte contacts skin, clothing, or eyes.
- 1.9.3. Wear complete eye protection and clothing protection. Avoid touching eyes while working near a storage battery.
- 1.9.4. If battery electrolyte contacts skin or clothing, wash immediately with soap and water. If electrolyte enters eye, immediately flood the eye with running cold water for at least 10 minutes and get medical attention immediately.
- 1.9.5. **NEVER** smoke or allow a spark or flame in vicinity of battery or engine.
- 1.9.6. Be extra cautious to reduce risk of dropping a metal tool onto the battery. It might spark or short circuit the battery or another electrical part that may cause explosion. Using insulated tools reduces this risk, but will not eliminate it.
- 1.9.7. Remove personal metal items such as rings, bracelets, necklaces, and watches when working with a storage battery. A storage battery can produce a short circuit current high enough to weld a ring or the like to metal, causing a severe burn.
- 1.9.8. When charging batteries, charge 6 and 12 cell LEAD-ACID or 10 and 20 cell LIQUID ELECTROLYTE NICKEL-CADMIUM batteries only, with rated capacity of 30 to 1100 Ampere hours. Charger

certified for fire pump and emergency generator applications. For a 24 hour recharge time do not exceed 220 Ampere hours of capacity per 12A charger output current. Do not use this battery charger to supply power to an extra-low voltage electrical system or to charge any type of non-rechargeable, dry cell, alkaline, lithium, nickel-metal-hydride, or sealed nickel-cadmium batteries that are commonly used with home appliances. These batteries may burst and cause injuries to persons and damage to property.

- 1.9.9. **NEVER** charge a frozen battery.
- 1.9.10. The charger contains a DC output fuse for *internal* fault protection, but this will not protect the DC wiring from fault currents available *from the battery*. Consult national and local ordinances to determine if additional battery fault protection is necessary in your installation.
- 1.10. Preparing Battery For Charge
 - 1.10.1. Be sure area around battery is well ventilated while battery is being charged.
 - 1.10.2. Ensure battery terminals are clean and properly tightened. Be careful to keep corrosion from coming in contact with eyes.
 - 1.10.3. Add distilled water in each cell until battery acid reaches level specified by battery manufacturer. Do not overfill. For a battery without removable cell caps, such as valve regulated lead acid batteries, carefully follow manufacturer's recharging instructions.
 - 1.10.4. Study all battery manufacturer specific precautions such as removing or not removing cell caps while charging and recommended rate of charge. The recommended charge current range must include the rated output current of the charger.
- 1.11. Charger Location
 - 1.11.1. Locate the charger as far away from the battery as DC cables permit.
 - 1.11.2. Never place the charger directly above or below the battery being charged; gases from the battery will corrode and damage charger.
 - 1.11.3. Never allow battery acid to drip on charger when reading electrolyte specific gravity or filling battery.
 - 1.11.4. Do not operate charger in a closed-in area or restrict ventilation in any way.
 - 1.11.5. Do not set anything on top of the charger.

2 MODEL NUMBER BREAKOUT

S	4	- C	1	0	- H	0	0	0	0	0	0	0
Α	В	С	D	Ε	F	G	Н	I	J	К	L	М

Field	Parameter	Code	Value	
Α	Product Family	S	MicroGenius S	
в	Enclosure	2	S2 chassis	
D	Enclosure	4	S4 chassis	
		А	Single output, no breakers	
		В	Single output, AC and DC breakers (S4 only)	
с	Output and Protection	С	Single output, AC/DC breakers with supplemental surge (S4 only)	
	Options	D	Multiple output, single ground, no breakers	
		Е	Multiple output, single ground, AC breaker (S4 only)	
		F	Multiple output, single ground, AC breaker, surge (S4 only)	
	Communications	0	J1939 and Modbus RS-485	
D		1	J1939, Modbus TCP/IP, native SENSbus USB	
		2	J1939 and Modbus RS-485 with RJ-45 to terminal block adapter	
		3	J1939, Modbus TCP/IP, USB, & RJ45 to terminal block adapter	
		0	Standard	
Е	Configuration	R	19in rack mount ears (S4 only)	
		Т	23in rack mount ears (S4 only)	
F	Output A Code	Х	See output code table	
G	Output A Redundancy	Х	See redundancy code table	
Н	Output B Code	Х	See output code table	
I	Output B Redundancy	Х	See redundancy code table	
J Output C Code X See output code table		See output code table		
К	Output C Redundancy	Х	See redundancy code table	
L	Output D Code	Х	See output code table	
М	Output D Redundancy	Х	See redundancy code table	

OUTPUT CODE								
CODE VOLTAGE CURRENT CASE								
0	N/A	N/A	N/A					
А	12 / 24V	15A	S4					
В	12 / 24V	20A	S2					
D	12 / 24V	30A	S2/S4					
F	12 / 24V	45A	S4					
Н	12 / 24V	60A	S4					

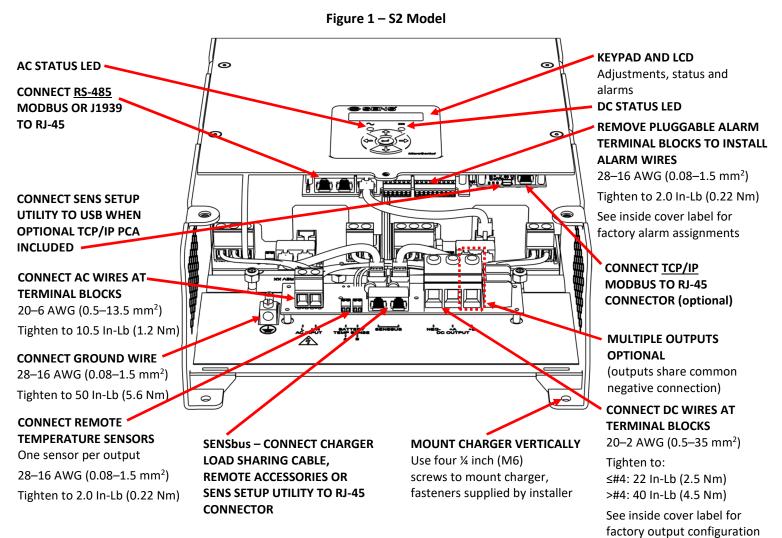
REDUNDANCY CODE						
CODE REDUNDANCY						
0	N + 0					
1	N + 1					
2	N + 2					

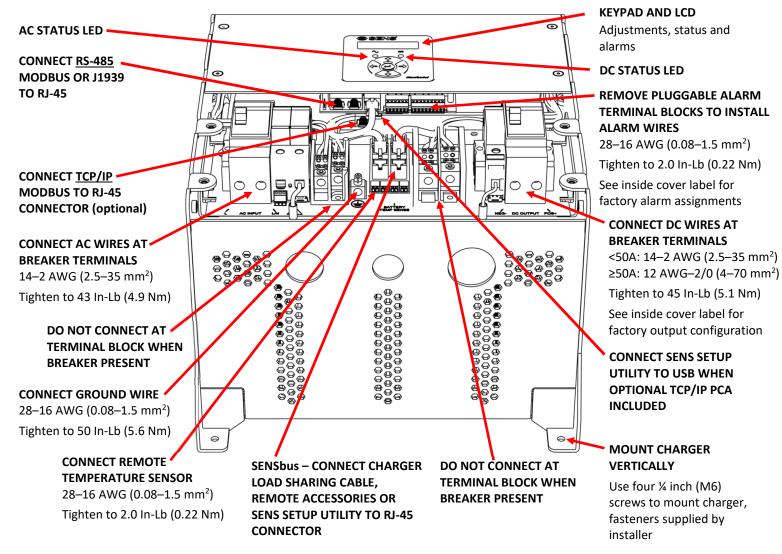
3 PERFORMANCE SPECIFICATIONS

MicroGenius[®] S2/S4 is a switchmode, regulated, filtered, microprocessor-controlled, current limited battery charger designed for heavy-duty industrial service. Chargers may be configured for three primary applications: 1) DC power and standby battery charging for industrial control and safety systems, 2) DC power supply and battery charging for marine environments and 3) quick recharge and long life maintenance of engine start batteries. The charger is provided in two enclosure sizes (S2 and S4) and with various output options. Every model provides Modbus and J1939 communications, 5 alarm relays, easily readable alpha-numeric display and keypad. Optional features include breakers, supplemental surge protectors, TCP/IP Modbus with native USB, IP22 drip shield as well as multiple outputs configured to different output voltages. Charger specifications are detailed in the table below, see following sections for installation and operation instructions.

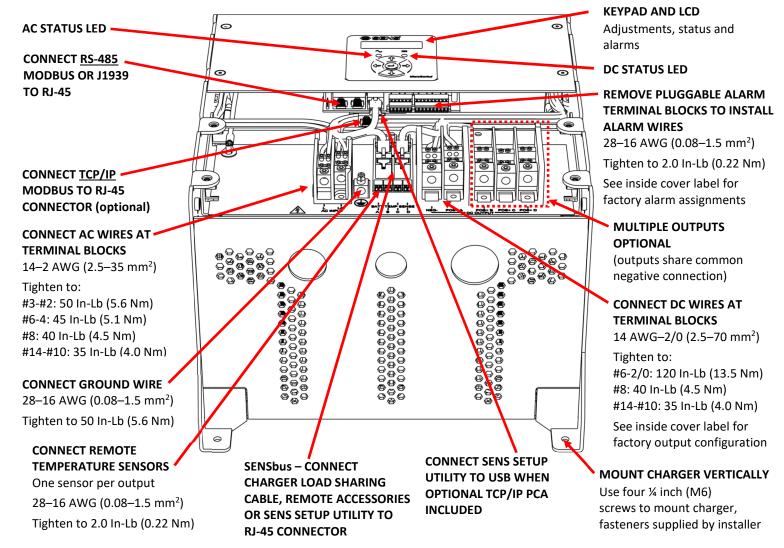
AC Input	Voltage, Frequency	90-265 VAC, 47-63 Hz				
	Input Current	S2: 8 Amps maximum (at 100 VAC)				
		S4: 16 Amps maximum (at 100 VAC)				
	Protection	Supplementary overcurrent protection fuse (non-replaceable);				
		transient protected to EN61000-4-5 level 4				
		2-pole circuit breaker (optional with S4)				
		Supplemental surge protection (optional with S4). Surge protective				
		device is field replaceable.				
	Efficiency	Up to 93%; meets CA Energy Commission (CEC) Title 20 Appliance				
		Efficiency Regulations				
	Power factor	>.95 typical at maximum rated load current and boost charge voltage				
DC output	Voltage	12/24V nominal; multiple output assignments (optional); adjustable				
		from 0-34V using front panel keypad or computer to charger				
		cable/native USB (optional) and SENS Setup Utility Kit (SENS p/n				
		209254 plus SENS software available at <u>www.sens-usa.com</u>)				
	Current	15-60 Amps, see section 2. Output power reduced by approximately				
		20% for output voltages greater than 24 VDC when input voltage is				
		less than 170 VAC.				
	Soft start	Charger gradually increases current with a maximum of 5 seconds to				
		full-required output				
	Charging modes	Multi-stage, including float, boost and commissioning charge modes				
	Battery type programs	Flooded lead-acid, AGM, Ni-Cd, VRLA, ultracapacitor				
	DC power supply	Delivers fast-responding, stable, well-filtered DC without battery				
	operation					
	Current limit	100% current capability subject to temperature limits and AC voltage				
		limits; field adjustable				
	Charging characteristic	Constant voltage, current limited; patented Dynamic Boost control				
	Line/load regulation	<u>+</u> 0.5%				
	Output ripple	<30mVrms with or without battery				
	Battery temperature	On-board sensor controls changes in output voltage when				
	compensation	temperature is between 0°C and +40°C at a rate of – 0.18% per				
		degree C; optional remote battery temperature probe (SENS p/n				
		209481); remote temperature probe connections provided for each				
		output				
	Output protection	Current limit, supplementary overcurrent protection fuse (non-				
		replaceable), transient protected				
		2-pole circuit breaker (optional with S4)				
		Supplemental surge protection (optional with S4). Surge protective				

Table 1 – Specifications


		device is field replaceable.				
	Dead battery charge	Starts into and recharges zero volt battery without user intervention				
	Parallel/Load Share	Two or more load-sharing chargers operate with all modes				
	operation	synchronized for increased current or fault tolerance, requires load				
	operation	share accessory kit (SENS p/n 209069)				
	Load Dump protection	Output voltage over-shoot is limited to 15% to prevent damage to				
		connected devices if battery is disconnected while charger is				
		operating				
	Output Blocking	Prevents sparking during battery connection when battery is first				
	protection	connected to charger; serves as an "OR" diode to isolate a non-				
	P	functioning charger from others in a redundant charger configuration				
Adjustment	Charge mode control	Fully automatic patented Dynamic Boost system. Manual boost and				
& Controls		battery commissioning available from keypad.				
	Keypad adjustment	Enable or change all settings from front panel				
	Computer adjustment	Change or customize settings from computer using computer to				
		charger cable/native USB (optional) and SENS Setup Utility Kit (SENS				
		p/n 209254 plus SENS software available at <u>www.sens-usa.com</u>)				
Status	LEDs	Two multi-color front panel status LEDs				
display	Digital metering	DC voltmeter accurate to $\pm 2\%$; DC ammeter to $\pm 5\%$. AC input voltage is				
		for reference only. If AC waveform is not sinusoidal or is distorted the				
		AC voltage will not be reported accurately.				
	Status messages	20-character display of status and alarm messages				
Alarms	Alarms	Factory set and field reconfigurable.				
	Output via network	Alarms available via either J1939 or Modbus ports. Alarm indication				
		delayed by configured alarm delay value.				
	Form C contacts	Five Form C contacts, each rated 30VDC/VAC, 2A resistive, assignable				
		at factory, using keypad or using SENS Setup Utility. Alarm indication				
		delayed by configured alarm delay value.				
	Alarm Delay	30 seconds by default, programmable between 5 to 60 seconds using				
		keypad or SENS Setup Utility. Alarm indication delayed for				
		communications ports and relay contacts, LED indication not delayed.				
Networking	J1939 communications	CAN 2.0 extended ID on RJ-45 port				
	Modbus	Modbus RS-485 on RJ-45 port, Modbus TCP/IP (optional) on RJ-45				
	communications	port				
	SENSbus	Proprietary bus for connection of paralleled chargers and SENS				
		accessories				
Environ-	Operating temperature	-40°C to +70°C; meets full specification from-40°C to +40°C				
mental		LCD: display may be unreadable and life reduced above 65°C				
	Cooling	Natural convection cooled				
	Storage temperature	-40°C to +70°C				
	Cold Start	Cold starts down to -40°C. Requires approximately five seconds				
		additional time to start at temperatures below -20°C.				
	Humidity	5% to 95%, non-condensing				
	Water ingress	IP20; IP 22/NEMA 3R with optional drip shield (SENS p/n 209291 for				
		S2 and 209287 for S4)				
	Vibration	Swept Sine (EN60068-2-6): 4G, 18-500 Hz, 3 primary axes				
		Random: 20-500Hz, .01G ² /Hz				
	Shock	EN 60068-2-27 (15G)				
	Electrical transient	ANSI/IEEE C62.41 and EN 61000-4-12 on power terminals				
Abuse	Reverse polarity	Charger self-protects without fuse clearing; indication via LED and				


protection		LCD; charger recovers automatically after removal of fault condition
	Wrong voltage battery	Charger-battery voltage mismatch shuts down charger after 5
		minutes; indication via LED and LCD
	Overvoltage shutdown	Selective; shutdown only operates if charger causes the overvoltage
		condition. Overvoltage caused by an external voltage source does not
		shut down the charger.
	Over temperature	Gradual output power reduction if heatsink temperature becomes
	protection	excessive
Regulatory	North America	C-UL-US Listed: CSA 22.2, No. 107.2; UL 1012, File E114117, category
compliance		QQIJ; UL 1236, File E109740 for category BBGQ and File EX6409 for
		categories BBHH, BBJY and QWIR; certified to UL 1236 supplements
		SB (marine), SC (fire pump) and SE (emergency generator)
		NFPA-70; NFPA-110 when annunciating to the genset control panel
		the charger's output voltage, current, and alarm status via J1939 or
		with alarm relays
		FCC: Part 15, Class A commercial use and ICES-003 (Canada).
		This device complies with part 15 of the FCC Rules. Operation is
		subject to the following two conditions: (1) This device may not cause
		harmful interference, and (2) this device must accept any
		interference received, including interference that may cause
		undesired operation.
		Seismic: rigid and non-structure wall mount; max S _{DS} of 2.5G; IBC
		2000-2015; California BC 2007-2016
		American Bureau of Shipping: Type Approved
		California Energy Commission: Title 20 Appliance Efficiency
		Regulations
	European Union (CE)	EMC: 2014/30/EU
		EN 61000-6-4 (Emissions – Class A)
		CISPR 11 – Class A
		EN 61000-6-2 (Immunity – Industrial Environments) EN 61000-4-2 Electro Static Discharge 4 kV contact, 8 kV air
		c
		EN 61000-4-3 Radiated Immunity – at 10V/m EN 61000-4-4 Electrical Fast Transients – 2kV AC, 1kV I/O
		EN 61000-4-5 Surge Immunity – 2 kV cm, 1 kV diff
		EN 61000-4-6 Conducted power line immunity – 10 V r.m.s.
		EN 61000-4-8 Power frequency magnetic field testing – 30 A/m
		EN 61000-4-11 Voltage dips and interruptions – per the standard
		LVD: 2014/35/EU
		EN 60335-1 & EN 60335-2-29
		RoHS 2: 2011/65/EU
		EN 50581
		WEEE: 2012/19/EU
		This charger is considered electrical and electronic equipment (EEE)
		for non-household use and should be recycled accordingly. Do not
		dispose as unsorted municipal waste. See SENS website (<u>www.sens-</u>
		<u>usa.com</u>) for information on how to properly recycle.
Construction	Housing/configuration	Aluminum with powder coated finish
	0,	S2 case size: includes three ¾ inch conduit opening
		S4 case size: includes one each ¾ inch, 1 inch and 1-¼ inch conduit

	S4 case size: rack mount brackets for 19 and 23 inch racks (optional)
Dimensions	See drawings and dimensions at back of manual
Weight	S2 case size: 13 lbs (5.9 kg) maximum
	S4 case size: 32 lbs (14.5 kg) maximum
Connections	AC and DC terminal blocks or breakers (optional), see section 6 for
	allowed wire gauges
	J-1939 and Modbus: RJ-45
	Form C alarms terminal block plug: 28 to 16 AWG


4 SYSTEM OVERVIEW

Diagrams follow to demonstrate multiple configurations.

Figure 2 – S4 Single Output with Breakers

Figure 3 – S4 Single/Multiple Output without Breakers

5 MOUNTING INSTRUCTIONS

INSTALLATION OF THE UNIT MUST COMPLY WITH LOCAL ELECTRICAL CODES AND OTHER APPLICABLE INSTALLATION CODES AND BE MADE ACCORDING TO THE INSTALLATION INSTRUCTIONS AND ALL APPLICABLE SAFETY REGULATIONS.

Printed circuit boards contain static sensitive components. Damage can occur even when static levels are too low to produce a noticeable discharge shock. To avoid static discharge damage, handle the charger by the chassis only. Remove the cover only when access is essential for installation and service, and replace it promptly when finished.

5.1. Mounting Location

The charger is provided in two different enclosure sizes, S2 and S4. See diagrams at back of manual for dimensions and mounting information.

- 5.1.1. Charger is rated IP22 with optional drip shield installed.
- 5.1.2. Charger will operate at full specification when located where temperatures are within -40°C (-40°F) to +40°C (104°F). Output power is gradually reduced at higher temperatures.
- 5.1.3. Mount charger vertically to ensure adequate ventilation.
- 5.1.4. Leave clear space for ventilation all around the charger: at least 6 inches (15 cm) at the top; at least 4 inches (10.16 cm) at the bottom; at least 0.5 inches (1.27 cm) on each side. Operating temperature ranges stated above assume stated clearances.
- 5.1.5. Mount to a wall or other vertical support. The mounting surface must safely support the weight of the charger and the fixed wiring. S2 chargers have a maximum weight of 13 lbs (5.9 Kg). S4 chargers have a maximum weight of 32 lbs (14.5 Kg).
- 5.1.6. Allow sufficient room for routing the fixed wiring to the charger. All wires enter the charger from the bottom. See diagrams at back of manual for further information.
- 5.1.7. Do not mount the charger above any heat generating equipment.

5.2. Mounting Instructions

- 5.2.1. Drill four wall mounting holes using dimensions provided on diagrams at back of manual. **IMPORTANT: Protect charger from all drill shavings!**
- 5.2.2. Rack mount brackets (19 inch and 23 inch) are optional for the S4 enclosure size. Mount brackets to charger as shown on diagrams at back of manual before mounting charger in rack.
- 5.2.3. Mount the charger before connecting AC, DC, communications and alarm wiring to ensure unobstructed access to mounting holes.
- 5.2.4. Mount the charger using four ¼ inch (M6) screws with standard flat washers. Mounting hardware is not included with the charger and must be provided by the installer.

6 SETUP AND WIRING

IMPORTANT! The charger is configured at the factory and typically requires no adjustments before operating. Refer to the label on the inside lower cover for factory configured output and alarm relay assignments. The charger may be reconfigured using the front panel keypad or by software programming using the SENS Setup Utility.

All wiring must comply with applicable codes and local ordinances.

WARNING: ENSURE THAT AC POWER IS DISCONNECTED AT A CIRCUIT BREAKER OR OTHER SAFETY DISCONNECT BEFORE WIRING THE CHARGER

6.1. Wire Ratings and Sizes

- 6.1.1. All power conductors should be rated for use at 90°C or higher and 400V or higher. Alarm relay conductors and communications data cable should be rated for use at 75°C or higher.
- 6.1.2. Coordinate the AC input conductor size with the customer-provided branch circuit protection device.
- 6.1.3. For best performance and recharge time, refer to the following table to determine the appropriate output conductor gauge and length. Use of a remote temperature sensor (SENS p/n 209481, see section 9.12) is highly recommended for best charging performance.

Charger Rated	Wire	Size	Resistance	Maximum	Charger to
Output Current	_		per Foot		stance (Ft.)
(Amps)	AWG mm ²		(mΩ/Ft.)	12V 24V	
	14	2.5	2.50	6	12
	12	4.0	1.60	10	20
15	10	6.0	1.00	17	34
	8	10	0.63	26	52
	6	16	0.40	42	84
	14	2.5	2.5	5	10
	12	4	1.6	8	16
20	10	6	1	13	26
	8	10	0.63	20	40
	6	16	0.4	31	62
	14	2.5	2.5	4	8
	12	4	1.6	6	12
25	10	6	1	10	20
	8	10	0.63	16	32
	6	16	0.4	25	50
	14	2.5	2.5	3	6
	12	4	1.6	5	10
	10	6	1	8	16
30	8	10	0.63	13	26
	6	16	0.4	21	42
	4	25	0.25	33	66
	2	35	0.16	52	104
	14	2.5	2.5	3	6
35	12	4	1.6	4	8
	10	6	1	7	14

Table 2 – DC Output Cable Size

	8	10	0.63	11	22
	6	16	0.4	18	36
	4	25	0.25	29	58
	2	35	0.16	45	90
	10	6	1	6	12
	8	10	0.63	9	18
45	6	16	0.4	14	28
	4	25	0.25	22	44
	2	35	0.16	35	70
	10	6	1	5	10
	8	10	0.63	8	16
50	6	16	0.4	13	26
	4	25	0.25	20	40
	2	35	0.16	31	62
	8	10	0.63	7	14
60	6	16	0.4	10	20
00	4	25	0.25	17	34
	2	35	0.16	26	52

The above lengths consider the resistance of the battery and cables only and do not take into account any additional interconnects. The above lengths are for operation at $25^{\circ}C/77^{\circ}F$. For high temperature installations ($40^{\circ}C/104^{\circ}F$) increase wire gauge by 10%.

6.2. Grounding Instructions and Connection

- 6.2.1. Charger must be grounded to reduce risk of electric shock. The charger must be connected to a grounded, metal, permanent wiring system, or an equipment-grounding conductor (earthing conductor) must be run with the circuit conductors and connected to equipment-grounding terminal on charger.
- 6.2.2. Connect the equipment grounding conductor to the ground lug in the charger (see Figures 1-3). This lug is marked with the ground symbol. This should always be the first wire connected and the last wire disconnected.

6.3. DC Connection

Ensure that any battery disconnect devices in the system, if used, are opened (batteries disconnected from DC bus). Connect the DC output conductors to the DC output terminal block/breaker in the charger (see Figures 1-3). Chargers with multiple outputs share a common negative connection (see Figure 4). Always observe proper polarity of the DC output leads. Always connect the output leads in the following order – charger output to ungrounded battery terminal, followed by charger output to grounded battery terminal. If the battery must be disconnected for service, remove the output wiring in the reverse order. Tighten connections to torque specified in Table 3. Route DC wiring at least ¼ inch (6 mm) away from AC wiring, alarm wiring, and the circuit board.

WARNING: A MAXIMUM OF 40 VOLTS MAY BE APPLIED AT THE OUTPUT TERMINALS. HIGHER VOLTAGE MAY DAMAGE THE CHARGER.

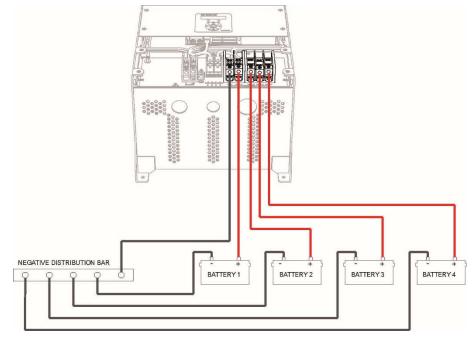


Figure 4 – Multiple Output Connection

Table 3 – DC Allowed Wire Gauge and Torque Requirements

Charger Model	Connection Type	Allowed Wire Gauge	Required Torque	Tool
S2	Terminal Block	20-2 AWG (0.5-35 mm²)	≤#4: 22 In-Lb (2.5 Nm) >#4: 40 In-Lb (4.5 Nm)	Phillips P2
S4	Breaker	<50A: 14-2 AWG (2.5-35 mm ²) ≥50A: 12 AWG-2/0 (4-70 mm ²)	45 In-Lb (5.1 Nm)	5/16 inch flat-head
S4	Terminal Block	14 AWG-2/0 (2.5-70 mm²)	#6-2/0: 120 In-Lb (13.5 Nm) #8: 40 In-Lb (4.5 Nm) #14-#10: 35 In-Lb (4.0 Nm)	3/16 inch hex

Table 4 – DC Output Breaker Rating

Charger Rated Output Current (Amps)	Optional DC Breaker Rating (Amps)	Optional DC Breaker Interrupt Rating (KAIC)
15	20	5
20	25	5
25	40	5
30	40	5
35	45	5
45	60	5
50	70	5
60	90	5

6.4. AC Connection

This unit is permanently connected to the AC circuit and to the battery. For models not equipped with an AC input breaker, an external disconnect device must be located in the AC input to the charger. The charger is rated to operate on any AC input within the range of 90-265VAC, 47-63Hz.

Ensure that the AC input supply is de-energized. Connect the AC line and neutral conductors to the AC input terminal block/breaker in the charger (see Figures 1-3). If there is an identified grounded circuit conductor (neutral), attach it to the terminal marked "L2/N." Tighten connections to torque specified in Table 5. Route AC wiring at least ¼ inch (6 mm) away from DC wiring, alarm wiring, and the circuit board.

Charger Model	Connection Type	Allowed Wire Gauge	Required Torque	Tool
S2	Terminal Block	20-6 AWG (0.5-13.5 mm ²)	10.5 In-Lb (1.2 Nm)	Phillips P2
S4	Breaker	14-2 AWG (2.5-35 mm ²)	43 In-Lb (4.9 Nm)	5/16 inch flat-head
S4	Terminal Block	14-2 AWG (2.5-35 mm²)	#3-#2: 50 In-Lb (5.6 Nm) #6-4: 45 In-Lb (5.1 Nm) #8: 40 In-Lb (4.5 Nm) #14-#10: 35 In-Lb (4.0 Nm)	1/4 inch flat-head

Charger Rated	AC Input	Optional AC	Optional AC Breaker
Output Current	Current	Breaker Rating	Interrupt Rating
(Amps)	(Amps)	(Amps)	(KAIC)
15	4	15	10
20	8	15	10
25	8	15	10
30	8	15	10
35	12	15	10
45	12	15	10
50	16	20	10
60	16	20	10

Table 6 – AC Input Current and Breaker Rating

6.5. Alarm Connections

See charger inside cover label for original factory alarm relay assignments (see Figure 5). Alarm relay assignments are custom configurable using the front panel keypad (based on application) or the SENS Setup Utility. Connect alarm wiring to the respective terminals on the pluggable terminal block in the charger (see Figures 1-3 for location in charger and Figure 6 for detail). To make wiring easier, the terminal block unplugs from the header. Pull terminal block straight out from header to remove. Connect wires to terminal block by tightening screws at each position. After wires are connected, plug terminal block securely back into header. Wire from FAIL or OK to COM depending on whether the alarm should be present on an open or closed circuit (see Tables 7-9). Connect alarm terminals only to low voltage, limited energy ("Class 2") circuits. Alarm circuits are rated 2A at 30V AC or DC. The terminals accept 28-16 AWG (0.08-1.5 mm²) conductors. Tighten connections to 2.0 Lb-In (0.22 Nm) using a small slotted driver. Route alarm wiring at least ¼ inch (6 mm) away from DC wiring, AC wiring, and the circuit board. Relays will change state for an alarm on any output on chargers with multiple outputs.

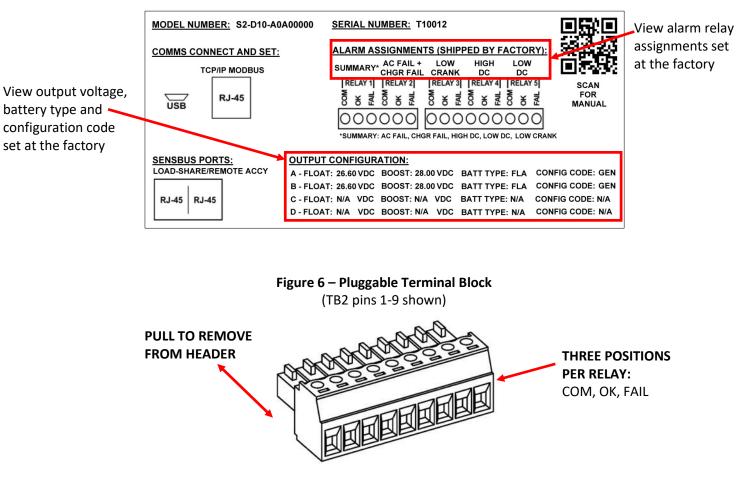


Figure 5 – Configuration Label (on inside lower cover)

Table 7 – Alarm Relay Contact Wiring for Genset Configura	tion
---	------

	RELAY 1	RELAY 2	RELAY 3	RELAY 4	RELAY 5
Relay	Summary	AC Fail + Charger	Low Crank Alarm	High DC Alarm	Low DC Alarm
Contacts	Alarm*	Fail Alarm			
Common	COM (TB1-1)	COM (TB1-4)	COM (TB2-1)	COM (TB2-4)	COM (TB2-7)
Open on	OK (TB1-2)	OK (TB1-5)	OK (TB2-2)	OK (TB2-5)	OK (TB2-8)
alarm				Defaults to OK	
(normally				with no AC and	
closed)				DC power	
Close on	FAIL (TB1-3)	FAIL (TB1-6)	FAIL (TB2-3)	FAIL (TB2-6)	FAIL (TB2-9)
alarm	Defaults to FAIL	Defaults to FAIL	Defaults to FAIL		Defaults to FAIL
(normally	with no AC input	with no AC input	with no AC and		with no AC and
open)			DC power		DC power

*Summary alarm includes AC Fail, Charger Fail, Low Crank, High DC and Low DC alarms.

Table 8 – Alarm Relay Contact Wiring for Marine Configuration

Wire from COM to OK for alarm present on open circuit or from COM to FAIL for present on closed circuit.

	RELAY 1	RELAY 2	RELAY 3	RELAY 4	RELAY 5
Relay	Summary	AC Fail	Ground Fault	High DC Alarm	Low DC Alarm
Contacts	Alarm*		Alarm		
Common	COM (TB1-1)	COM (TB1-4)	COM (TB2-1)	COM (TB2-4)	COM (TB2-7)
Open on	ОК (ТВ1-2)	OK (TB1-5)	OK (TB2-2)	OK (TB2-5)	OK (TB2-8)
alarm (normally closed)			Defaults to OK with no AC and DC power	Defaults to OK with no AC and DC power	
Close on alarm (normally open)	FAIL (TB1-3) Defaults to FAIL with no AC input	FAIL (TB1-6) Defaults to FAIL with no AC input	FAIL (TB2-3)	FAIL (TB2-6)	FAIL (TB2-9) Defaults to FAIL with no AC and DC power

*Summary alarm includes AC Fail, Charger Fail, Ground Fault, High DC and Low DC alarms.

Table 9 – Alarm Relay Contact Wiring for Stationary Power Configuration

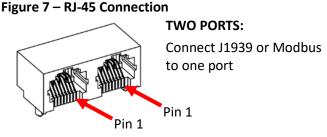
Wire from COM to OK for alarm present on open circuit or from COM to FAIL for present on closed circuit.

	RELAY 1	RELAY 2	RELAY 3	RELAY 4	RELAY 5
Relay Contacts	Summary Alarm*	AC Fail	Battery Discharging Alarm	High DC Alarm	Low DC Alarm
Common	COM (TB1-1)	COM (TB1-4)	COM (TB2-1)	COM (TB2-4)	COM (TB2-7)
Open on alarm (normally closed)	ОК (ТВ1-2)	ОК (ТВ1-5)	ОК (ТВ2-2)	OK (TB2-5) Defaults to OK with no AC and DC power	ОК (ТВ2-8)
Close on alarm (normally open)	FAIL (TB1-3) Defaults to FAIL with no AC input	FAIL (TB1-6) Defaults to FAIL with no AC input	FAIL (TB2-3) Defaults to FAIL with no AC and DC power	FAIL (TB2-6)	FAIL (TB2-9) Defaults to FAIL with no AC and DC power

*Summary alarm includes AC Fail, Charger Fail, Battery Discharging, High DC and Low DC alarms.

6.6. Remote Temperature Sensor Connection—Optional

The charger includes local temperature compensation using internal on-board sensors. Alternately, the charger will use remote temperature compensation based on the temperature of the batteries when an optional external sensor is located at the batteries and connected to the remote temperature sensor terminal block in the charger (see Figures 1-3). Chargers with multiple output terminals also include multiple remote temperature sensor terminal blocks (connect one sensor for each output). Remote temperature compensation is highly recommended in all applications and is required for ultracapacitor charging. It is most critical in applications where battery and charger are located in different ambient conditions and in NFPA-20 fire pump and NFPA-110 emergency power system installations in order to return 100% of the battery's ampere-hour rating within 24 hours without causing damage to the battery. Chargers connected to load share only require a remote temperature sensor connected to one charger.

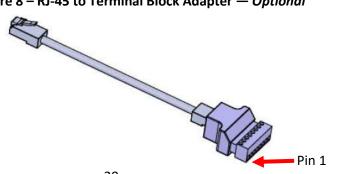

The remote temperature sensor is not polarized; it does not matter which lead connects to each terminal. Route sensor wiring at least ¼ inch (6 mm) away from DC wiring, AC wiring, and the circuit board. Locate the remote sensor where it will accurately detect the battery temperature by connecting it

to a *grounded* battery terminal or the battery case. When securing to the battery case, use an adhesive/glue properly rated for the application material and temperature, such as Super Glue[®]. Temperature compensation is disabled by connecting a short across the remote temperature sensor terminal block or by setting the temperature compensation slope to zero using the keypad or SENS Setup Utility. See section 9.12 for further information regarding temperature compensation. A 50-foot remote temperature sensor is available to order separately (SENS p/n 209481).

6.7. SAE J1939 Communications Setup (CANbus)

Every charger includes SAE J1939 (CANbus) communications. The J1939 interface provides a highly reliable, low cost method of delivering to the genset controller all information that NFPA 110 requires the battery charger to deliver. To be operational, the genset controller must support the charger J1939 connection. Contact your genset supplier to determine if your genset supports a J1939-connected charger. See section 10 for further information on J1939 operation and registers.

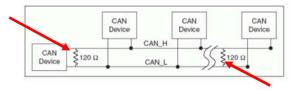
J1939 communications are disabled by default and until the BCH address is configured (see section 6.7.1). Connect J1939 communications using a twisted pair cable at the RJ-45 connector on the alarm/communications circuit board located on the inside front cover (see Figures 1-3 for location in charger and Figure 7 for detail). Two RJ-45 ports are provided. The ports are in parallel and either port may be used. See Table 10 for connector pinout. Communications are non-isolated and referenced to negative battery terminal. An adapter from RJ-45 to an 8-position terminal block may be connected to the RJ-45 connector and is available to order separately (SENS p/n 208026, see Figure 8).



Pin #	Purpose			
1	J1939 Data High/SENSbus			
2	J1939 Data Low/SENSbus			
3	No connect pass-through			
4	Modbus – D0 (B)			
5	Modbus +D1 (A)			
6	No connect pass-through			
7	Power*			
8	Common (referenced to battery negative)			

*Main circuit PCA only, used for interconnect between SENS devices

6.7.1. Battery Charger (BCH) J1939 Address


Configure the J1939 address using the front panel keypad (J9139 communications are disabled until this address is configured). J1939 supports two chargers per network cable. Set to address 1 for main charger or address 2 for auxiliary charger. The charger is set to address 1 by default.

For multiple output chargers, J1939 address 1 (main charger) is assigned to charger output A and address 2 (auxiliary charger) is assigned to output B by default. Use the keypad or the SENS Setup Utility to configure J1939 addresses to any desired charger output.

6.7.2. Termination

For proper J1939 operation, a 120-ohm terminator is required at the ends of the J1939 bus. If multiple devices are on the bus, only the devices on the ends of the network bus need termination resistors. Figure 9 shows an example of how to terminate the network. The charger is not equipped with terminators. Termination may be provided as part of the network cabling or 120-ohm termination plugs for the RJ-45 communications connector on the charger are available to order separately (SENS p/n 803707).

Figure 9 – J1939 Termination

6.8. Modbus Communications Setup

Every charger includes Modbus communications over RS-485 using RTU or ASCII mode. Modbus over TCP/IP is optional. Modbus is an application layer messaging protocol used for client/server communication and is implemented according to specifications provided by Modbus Organization (<u>http://www.modbus.org/specs.php</u>). See section <u>11</u> for further information on Modbus operation and configuration.

6.8.1. Modbus RS-485

Connect RS-485 Modbus communications using a twisted pair cable at the RJ-45 connector on the alarm/communications circuit board located on the inside front cover (see Figures 1-3 for location in charger and Figure 7 for detail). Two RJ-45 ports are provided. The ports are in parallel and either port may be used. See Table 10 for connector pinout. Communications are non-isolated and referenced to negative battery terminal. An adapter from RJ-45 to an 8-position terminal block may be connected to the RJ-45 connector and is available to order separately (SENS p/n 208026, see Figure 8). Modbus communications settings may be configured using the keypad or SENS Setup Utility prior to initiating.

6.8.1.1. Termination

For proper Modbus RS-485 operation, a 120-ohm terminator is required at the ends of the RS-485 bus. If multiple devices are on the bus, only the devices on the ends of the network bus need termination resistors. Figure 10 shows an example of how to terminate the network. The charger is not equipped with terminators. Termination may be provided as part of the network cabling or 120-ohm termination plugs for the RJ-45 communications connector on the charger are available to order separately (SENS 803707).

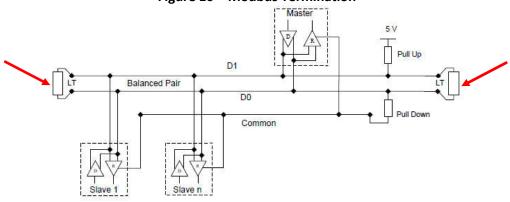
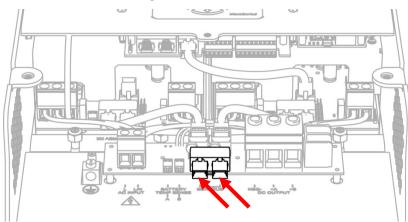


Figure 10 – Modbus Termination


LT = Line Termination 120-ohm resistor

6.8.2. Modbus TCP/IP—Optional

Connect TCP/IP Modbus communications using a twisted pair cable at the RJ-45 connector on the optional TCP/IP circuit board located on the inside front cover and separate from the alarm/communications circuit board (see Figures 1-3 for location in charger). TCP/IP Modbus communications settings must be configured using the DeviceInstaller Software provided by Lantronix Inc. (see section <u>11.1</u> for further instructions).

6.9. Load Share Connection—Optional

Multiple chargers may be connected in parallel to provide charger redundancy and increased charging current using a load sharing accessory, available to order separately (SENS p/n 209069). Connect the load sharing accessory from one charger to another using the SENSbus RJ-45 ports on each charger to automatically initiate load sharing. Two SENSbus RJ-45 ports are provided on the inside panel between the AC and DC connections (see Figures 11-12). The ports are in parallel and either port may be used for the load share connection. Connect one charger to the "CHARGER 1" port and the other charger to the "CHARGER 2" port on the load sharing accessory using provided network cables. Connect the other end of the network cables to the SENSbus RJ-45 port on each charger. Leave a factory installed 120-ohm terminator in a SENSbus port on each charger to ensure a terminator is located at both ends of the communications bus.

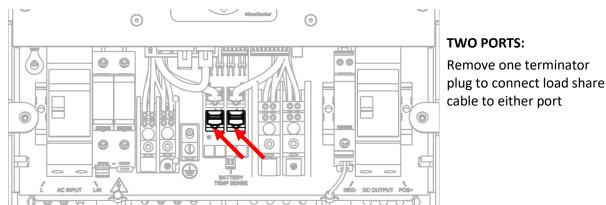


Figure 11 – S2 RJ-45 Connection

TWO PORTS:

Remove one terminator plug to connect load share cable to either port

Figure 12 – S4 RJ-45 Connection

Load sharing is essential to synchronizing operation of the Dynamic Boost and HELIX modes and helps ensure that current is shared within ±10% between chargers. Chargers intended for load sharing must be configured with the same output settings in order to load share. Corresponding outputs must be configured with the same output settings for chargers with multiple outputs. Load sharing operates independently on each output for chargers with multiple outputs. Connect corresponding outputs of load sharing chargers in parallel (i.e. connect output A to output A). Load sharing will not occur if non-corresponding outputs are connected (e.g. do not connect output A to output B). See section <u>9.13</u> for further information.

6.10. Remote Alarm/Communications Panel Accessory Connection-Optional

The optional remote alarm/communications panel accessory provides the ability to adjust and communicate with multiple chargers using one external device. The remote panel accessory may be configured with different alarm relay assignments than the alarm relays native to the charger. Connect remote accessories to the charger using a network cable connected to the SENSbus RJ-45 port. Two SENSbus RJ-45 ports are provided on the inside panel between the AC and DC connections (see Figures 11-12). Connect a network cable from the remote accessory to one port and leave the factory installed 120-ohm terminator in the second port. Connect the other end of the network cable to the RJ-45 splitter connected to the RJ-45 port on the remote accessory circuit board.

For proper operation, a 120-ohm terminator is required at both ends of the communications bus. Remote accessories are provided with a terminator installed in the 2-position RJ-45 splitter connected to the RJ-45 port located on the remote accessory circuit board. Remove the terminator on the splitter only if the remote accessory is not at the end of the communications bus.

The remote accessory may be connected to multiple chargers. In this case, the remote accessory, chargers or other equipment may be located at the ends of the communications bus. Ensure a terminator is located at both ends of the communications bus.

6.11. Verify Connections

- 6.11.1. Verify that all connections are secure and in the proper locations. Tighten all unused screws on terminal blocks to secure them against vibration.
- 6.11.2. Ensure all wires are routed in a way that the cover or other objects will not pinch or damage them.

7 START-UP PROCEDURE

7.1. Connect Battery/Outputs

Ensure wiring is correctly connected between charger and battery and/or additional outputs for chargers equipped with multiple outputs. Close any system battery disconnect, if used, to connect batteries to the charger.

7.2. Verify Configuration

Refer to the label on the inside lower cover for factory configured output voltage, battery type and configuration code (see Figure 5). Values for each output are displayed separately for multiple output chargers. Review and adjust charger configuration using the front panel keypad or the SENS Setup Utility if factory configured settings require modification. See section <u>9.10</u> for additional details on keypad navigation.

7.2.1. Output/Battery Voltage

Verify that battery voltage (for applications with batteries) matches charger output voltage. Charger output voltage is displayed on the label on the inside lower cover.

7.2.2. Battery Types

Adjusting battery types using the front panel keypad requires advanced security access. Change "UI Access Control" to "Advanced" in the "Service Tools" menu for access.

7.2.2.1. FLA

This setting is ideal for flooded lead-acid batteries used in engine starting applications. The charging algorithm for flooded lead-acid batteries includes Float mode (see section 9.2), Dynamic BoostTM mode (see section 9.3) and HELIX mode (see section 9.4).

7.2.2.2. AGM

The term, "AGM" in this manual and for the charger refers to AGM (absorbed glass mat) type batteries that are employed in engine starting applications. For AGM type batteries employed in non-engine starting applications please see "VRLA" below. The charging algorithm for absorbed glass mat batteries includes Float mode (see section <u>9.2</u>) and Dynamic Boost[™] mode (see section <u>9.3</u>).

7.2.2.3. NICD

This setting is appropriate when using nickel-cadmium batteries. The charging algorithm for nickel-cadmium batteries includes Float mode (see section <u>9.2</u>) and Dynamic Boost[™] mode (see section <u>9.3</u>). Nickel-cadmium batteries are used in all applications.

7.2.2.4. VRLA

The "VRLA" battery profile includes all valve regulated batteries, including AGM types, which are employed in non-engine starting applications. For AGM batteries employed in engine starting applications please see "AGM" above. The charging algorithm for valve-regulated lead-acid batteries includes Float mode only (see section <u>9.2</u>).

7.2.2.5. U12/U24

This setting is appropriate when charging ultracapacitors rather than batteries (see section <u>9.5</u>). U12 indicates a 12V ultracapacitor and U24 indicates a 24V ultracapacitor.

WARNING:

ULTRACAPACITORS ACCEPT AND DISCHARGE CURRENT RAPIDLY. NEVER ATTEMPT TO JUMP OR CONNECT A BATTERY TO AN ULTRACAPACITOR.

7.2.3. Configuration Code

The Configuration Code indicates charging algorithm and alarm setpoints configured at the factory. See sections 8 and 9 for further information.

7.3. Apply AC Input Voltage

Verify the AC input is the correct value (90-265 VAC, 47-63 Hz) and apply AC to charger.

Depending on the state of charge of the batteries and the load on the DC bus, the charger may go into current limit at this time, in which case the output voltage will be reduced as the charger operates in constant current mode. Eventually as the battery is charged, the charging current demand should taper to a value below the current limit setpoint of the charger, and the charger should revert to constant voltage output. Chargers configured to use boost may be in boost for up to 24 hours depending on state of charge of the batteries.

7.4. Power Off

Power charger off as necessary by disconnecting both AC and DC in any order.

8 ALARMS, LEDS AND DISPLAY

8.1. LED Indicators

The charger is equipped with two LEDs, one for AC status and one for DC status. See further alarm definitions in section <u>8.4</u>. LEDs indicate an alarm on any output on chargers with multiple outputs. The front panel LCD will indicate which output is in an alarm state.

AC LED	DC LED	Meaning
		AC and DC not applied or charger failed or
OFF	OFF	alarm/communications circuit board cannot
		communicate with main circuit board
*SOLID GREEN	SOLID GREEN	AC good, DC good, in Float Mode
SOLID GREEN	FLASHING GREEN	AC good, in Dynamic Boost Mode
*SOLID GREEN	FLASHING 2X GREEN	AC good, DC in current limit (max charge)
*SOLID GREEN	FLASH LONG-SHORT GREEN	AC good, HELIX Eco-Float mode
*SOLID GREEN	FLASH LONG-2X SHORT GREEN	AC good, HELIX Refresh Charge mode
*SOLID GREEN	FLASH LONG-SHORT YELLOW	AC good, battery commissioning mode active
*SOLID GREEN	FAST FLASHING GREEN	AC good, battery check in progress
*SOLID GREEN	FAST FLASHING YELLOW	AC good, battery check failure
*SOLID GREEN	SOLID RED	AC good, charger fail or overvoltage shutdown
SOLID GREEN		(charger disabled)
*SOLID GREEN	FLASHING RED/YELLOW	AC good, reverse polarity detected on output
	SOLID YELLOW	AC good, high or low DC voltage (above/below
*SOLID GREEN		alarm setpoint)
*SOLID GREEN	FLASHING GREEN/RED	AC good, system DC output good, some individual
JOLID GREEN		charger module(s) in alarm state
*SOLID GREEN	FLASHING YELLOW	AC good, low incompatible battery error (charger
JOLID GILLIN		disabled)
*SOLID GREEN	FLASHING GREEN/YELLOW	AC good, output limited by high temperature
*SOLID GREEN	DOUBLE FLASH YELLOW	AC good, load share fail
*SOLID GREEN	DOUBLE FLASH RED	AC good, load sharing DC negative connection
JOLID GREEN	DOUBLE FLASH RED	open or load sharing charger address fault
SOLID RED	SOLID GREEN	AC fail, DC voltage good
SOLID RED	SOLID YELLOW	AC fail, high or low DC voltage (above/below
		alarm setpoint)
SOLID RED	SOLID RED	AC fail, charger fail or overvoltage shutdown
JULID NED		(charger disabled)

Table 11 – LED Definitions

SOLID RED	FLASHING YELLOW	AC fail, low incompatible battery error (charger disabled)
ALTERNATING FLASHING YELLOW		Illegal jumper configuration
ALTERNATING FLASHING RED		Missing or invalid code (boot load required)
ALTERNATING FLASHING GREEN		Charger starting up

*AC LED will flash green when charger is in ultracapacitor mode.

8.2. Individual Alarm Relay Contacts

The alarm/communications circuit board offers five alarm discrete Form C contacts. The Form C relay contacts change state when alarms are activated. Alarm relay assignments are custom configurable to any of the alarm functions listed in section <u>8.4</u>. See charger inside cover label for original factory alarm relay assignments. See Tables 7-9 for typical alarm relay assignments.

Relays will change state for an alarm on any output on chargers with multiple outputs. The front panel LCD will indicate which output is in an alarm state. Alarm setpoints are configured separately for each output using the keypad.

By default, the relay contacts change state 30 seconds after the onset of a fault. The relay delay is configurable using the front panel keypad (see section 9.10) or the SENS Setup Utility. See section 8.4 for alarm definitions.

8.3. LCD Panel

A two line by twenty-character LCD is included with every charger and provides precision digital ammeter and voltmeter as well as information about input, output, charging status and alarms. The voltmeter is accurate to $\pm 2\%$ and the ammeter is accurate to $\pm 5\%$. The display is readable with or without ambient lighting and operates automatically, requiring no operator intervention.

The LCD is fully operational from -20°C to +40°C. It may temporarily become unreadable below -20°C but should recover as temperature increases. LCD life is reduced with sustained operation above 65°C.

8.4. Alarm Definitions

See Table 11 for a description of LED indicator activity. Unless noted otherwise, the following alarms are displayed on the LCD panel. LEDs indicate an alarm on any output on chargers with multiple outputs. The front panel LCD will indicate the alarm and which output is affected.

8.4.1. AC Line Failure

Indicates AC input voltage is not applied or is outside of allowed 90-265 VAC range. Activates solid red AC LED. Alarm/communications circuit board AC FAIL relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.2. High DC Voltage

Indicates DC output voltage is above factory alarm setpoint (see Table 12) or the configured level if setpoint is adjusted using keypad or SENS Setup Utility. Activates solid yellow DC LED. Alarm/communications circuit board HIGH DC relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

Configuration Codo*	Patton Tuna	High DC Setpoint	
Configuration Code*	Battery Type	12V	24V
	AGM	16.00	32.00
	FLA	16.00	32.00
GEN	NCD	16.00	32.00
	НСВ	16.00	32.00
	Ultracapacitor	17.00	28.00
MAR	VRLA	14.64	29.28
	AGM/FLA	14.82	29.64
	NCD	16.00	32.00
	VRLA	14.64	29.28
NGN	AGM/FLA	14.82	29.64
	NCD	16.00	32.00
PSP	N/A	13.20	26.40

*Configuration Code displayed on charger label

8.4.3. Battery Discharging

Indicates battery is beginning to discharge and DC output voltage is below factory alarm setpoint (see Table 13) or the configured level if setpoint is adjusted using keypad or SENS Setup Utility. The BATTERY DISCHARGING alarm is the first to trigger of three low output voltage alarms and is followed by LOW DC and then END OF DISCHARGE. Alarm setpoint must be set higher than LOW DC and END OF DISCHARGE alarms. Activates solid yellow DC LED. Alarm/communications circuit board BATTERY DISCHARGING relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

Configuration	Pottom Tuno	Battery Discharging Setpoint		
Code*	Battery Type	12V	24V	
	AGM	12.50	25.00	
	FLA	12.50	25.00	
GEN	NCD	12.50	25.00	
	HCB	12.50	25.00	
	Ultracapacitor	14.40	24.00	
MAR	VRLA	12.00	24.00	
	AGM/FLA	12.00	24.00	
	NCD	12.00	24.00	
	VRLA	12.00	24.00	
NGN	AGM/FLA	12.00	24.00	
	NCD	12.00	24.00	
PSP	N/A	10.20	20.40	

Table 13 – Factory Battery Discharging Setpoints

*Configuration Code displayed on charger label.

8.4.4. Low DC Voltage

Indicates battery has discharged and DC output voltage is below factory alarm setpoint (see Table 14) or the configured level if setpoint is adjusted using keypad or SENS Setup Utility. Alarm setpoint must be set lower than BATTERY DISCHARGING and higher than END OF DISCHARGE alarms. Activates solid yellow DC LED. Alarm/communications circuit board LOW DC relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

Configuration	Patton Tuna	Low DC	Setpoint
Code*	Battery Type	12V	24V
	AGM	12.10	24.20
	FLA	12.10	24.20
GEN	NCD	12.10	24.20
	HCB	12.10	24.20
	Ultracapacitor	13.00	22.40
MAR	VRLA	11.00	22.00
	AGM/FLA	11.00	22.00
	NCD	11.00	22.00
	VRLA	11.00	22.00
NGN	AGM/FLA	11.00	22.00
	NCD	11.00	22.00
PSP	N/A	10.20	20.40

Table 14 – Factory Low DC Setpoints

*Configuration Code displayed on charger label.

8.4.5. Battery End of Discharge

Indicates DC output voltage is below factory alarm setpoint (see Table 15) or the configured level if setpoint is adjusted using keypad or SENS Setup Utility. This alarm is intended only for longer discharge rates (i.e. not engine starting applications) and indicates the normal end-of-discharge voltage for a lead-acid battery. Alarm setpoint must be set lower than LOW DC and BATTERY DISCHARGING alarms. Activates solid yellow DC LED. Alarm/communications circuit board BATTERY END OF DISCHARGE relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

Configuration	Pottom Turo	Battery End of Discharge Setpoint		
Code*	Battery Type	12V	24V	
	AGM	10.50	21.00	
	FLA	10.50	21.00	
GEN	NCD	10.50	21.00	
	HCB	10.50	21.00	
	Ultracapacitor	10.50	21.00	
MAR	VRLA	10.50	21.00	
	AGM/FLA	10.50	21.00	
	NCD	10.50	21.00	
	VRLA	10.50	21.00	
NGN	AGM/FLA	10.50	21.00	
	NCD	10.50	21.00	
PSP	N/A	10.20	20.40	

Table 15 – Factory Battery End of Discharge Setpoints

*Configuration Code displayed on charger label.

8.4.6. Charger Failure

Indicates the charger is not able to provide the current demanded by the battery and/or load or is providing more current than the charger's control system is commanding. This is typically caused by a charger internal component failure. This alarm does not occur during AC power failures. Activates solid red DC LED. Alarm/communications circuit board CHARGER FAIL relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.7. Overvoltage Shutdown

Indicates that the charger has executed a high voltage shutdown and DC output voltage is above factory alarm setpoint (see Table 16) or the configured level if setpoint is adjusted using keypad or SENS Setup Utility. The charger disables itself whenever excessive output voltage occurs while the charger is delivering current. The overvoltage shutdown system is protected against nuisance trips and will not execute if the high voltage condition is caused by an external source. Activates solid red DC LED. Alarm/communications circuit board OVERVOLTAGE SHUTDOWN relay contacts change to Fail state after delay when alarm is assigned to relay contacts. Reset the charger by cycling AC and DC power to clear the alarm.

Configuration	Dottom: Turno	Overvoltage Sh	utdown Setpoint
Code*	Battery Type	12V	24V
	AGM	17.00	34.01
	FLA	17.00	34.01
GEN	NCD	17.00	34.00
	HCB	17.00	34.01
	Ultracapacitor	17.60	29.20
	VRLA	15.18	30.36
MAR	AGM/FLA	15.41	30.82
	NCD	17.00	34.00
	VRLA	15.18	30.36
NGN	AGM/FLA	15.41	30.82
	NCD	17.00	34.00
PSP	N/A	13.20	26.40

Table 16 – Factory Overvoltage Shutdown Setpoints

*Configuration Code displayed on charger label.

8.4.8. Reverse Polarity

Indicates a battery is connected backwards. Charger output is disabled until the condition is corrected. Activates flashing red/yellow DC LED. Alarm/communications circuit board REVERSE POLARITY relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.9. Low Cranking Voltage

Indicates the battery voltage is likely to be inadequate to provide engine-cranking capability. Indicates that DC output voltage during a prior cranking event dropped below default setpoint, 6V for a 12V system and 12V for a 24V system. **This alarm is latching and must be manually reset by disconnecting both AC and DC power or using keypad**. Chargers intended for marine and standby power applications are shipped with the low cranking voltage alarm disabled.

Alarm/communications circuit board LOW CRANK relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.10. Incompatible Battery

Indicates a 12V battery is connected to a 24V charger. The charger operates for approximately 5 minutes while observing behavior of the DC voltage. If DC voltage behavior is normal the charger will continue charging. If DC voltage behavior is abnormal, as is typical with a battery voltage

mismatch, the charger will shut down and lock off after approximately five minutes. Activates flashing yellow DC LED. Alarm/communications circuit board INCOMPATIBLE BATTERY relay contacts change to Fail state after delay when alarm is assigned to relay contacts. After correcting mismatched condition cycle power to reset the charger and begin operation. See section <u>9.6</u> for charging a very low or zero-volt battery.

8.4.11. Invalid Settings

Indicates a charger setting is not valid. Charger output is disabled until the condition is corrected. Activates alternating flashing yellow AC and DC LEDs. Alarm/communications circuit board INVALID SETTINGS relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.12. J1939 Inactive

Indicates the charger cannot access the J1939 network when configured to use J1939 communications. This will occur if the charger is not connected to a J1939 network or if the charger cannot claim an address to use on that network. The charger will not use J1939 communications until it can acquire a network address. Alarm/communications circuit board J1939 INACTIVE relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.13. Modbus Inactive

Indicates the charger cannot access the Modbus network and is not receiving messages when configured to use Modbus communications. Alarm/communications circuit board MODBUS INACTIVE relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.14. SENSbus Inactive

Indicates the charger cannot communicate using SENSbus when load sharing and/or remote accessories are connected. Alarm/communications circuit board SENSBUS INACTIVE relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.15. Thermal Fold Back

Indicates charger output is reduced to protect the charger from over-heating damage. The charger will not be able to produce full output until the ambient temperature is lowered. Alarm/communications circuit board THERMAL FOLD BACK relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

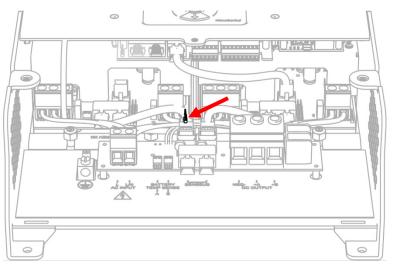
8.4.16. No Battery Temperature Sensor

Indicates disabled or failed remote temperature sensor. Alarm/communications circuit board NO BATT TEMP SENSOR relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

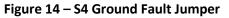
8.4.17. Current Limiting

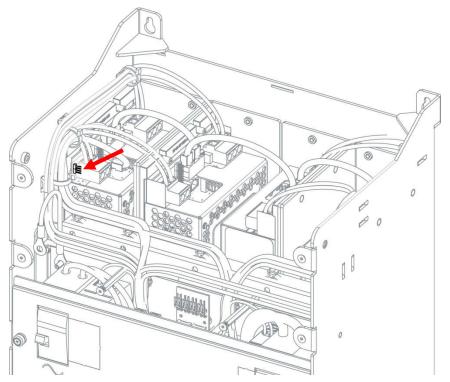
Indicates the charger is operating at maximum allowable output, either the maximum current setting or maximum power output (whichever occurs first). Alarm/communications circuit board CURRENT LIMIT relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.18. Ground Fault


Indicates a short circuit or high impedance leakage current (greater than 500uA) exists from the charger positive or negative output to ground. Chargers intended for genset applications are shipped with the ground fault alarm disabled. Chargers intended for Marine and stationary power applications are shipped with ground fault enabled. Disable the alarm using the front panel keypad. Alarm/communications circuit board GROUND FAULT relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

The RJ-45 port used for communications is not isolated from the charger output. Non-isolated


communications equipment/adapters connected to the RJ-45 port may cause a ground fault alarm.


When multiple chargers are operated in parallel and the ground fault alarm is desired, physically remove the ground fault jumper on all but one charger. The ground fault jumper is located on the leftmost internal charger module (see Figures 13-14). Access to the jumper requires removing the top cover on the S4 charger. Remove the lower cover first and then remove 6 screws on the upper front of the charger to remove the top cover.

For chargers with multiple outputs, ground fault detection is always indicated on output A. Chargers with multiple outputs have a common output return line and there is a single ground fault alarm for all outputs.

8.4.19. Low Current

Indicates current drawn from the charger is below factory alarm setpoint. Chargers are shipped with the low current alarm disabled. Alarm/communications circuit board LOW CURRENT relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.20. Load Share Fail

Indicates that chargers connected for load sharing are not sharing the current load. Activates double flashing yellow DC LED. Alarm/communications circuit board LOAD SHARE FAIL relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.21. AutoBoost Lockout Active

Indicates the Boost mode time limit has expired and charger has returned to Float mode. Boost mode is disabled until the time limit is reset. The Boost time limit is reset if charger power is cycled or an engine crank is detected. The Boost time limit is set to 24 hours by default.

8.4.22. DC Negative Open

Indicates an open DC negative output connection when chargers are load sharing. Tighten or make connection to remove alarm. Activates double flashing red DC LED. Alarm/communications circuit board DC NEGATIVE OPEN relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

8.4.23. Address Fault

Indicates an address fault when more than the maximum number of chargers is connected to load share. Activates double flashing red DC LED. Alarm is not displayed on the LCD and cannot be assigned to relay contacts.

8.4.24. Charger Module Fault

Indicates one or more individual charger module(s) internal to the charger are in an alarm state. Activates flashing green/red DC LED. Alarm/communications circuit board INDIVIDUAL CHARGER relay contacts change to Fail state after delay when alarm is assigned to relay contacts.

9 OPERATION

9.1. Charging Algorithms

The charger uses charging algorithms appropriate for different battery types. The charging algorithm for each battery type includes various combinations of Float mode, Dynamic Boost[™] mode, and HELIX mode, as described in Table 17. See following sections for descriptions of each charging mode.

	Charging Algorithm		
Battery Type	Float Mode	Dynamic Boost Mode	HELIX Mode
	Widde	Doost Widde	Widuc
FLA for Genset	\checkmark	\checkmark	\checkmark
FLA	\checkmark	✓	
AGM	\checkmark	✓	
NCD	√	✓	
VRLA	\checkmark		

Table	17 –	Charging	Algorithms
-------	------	----------	------------

9.1.1. Recharging Batteries

After a battery has been discharged, the charger will enter Dynamic Boost mode if this mode is enabled (see section 9.3). The charger's output voltage setpoint during Dynamic Boost mode increases to the boost voltage value (see section 9.3). If the battery is deeply discharged, DC voltage will remain below the boost voltage setpoint until the charger's output current drops below its rated maximum. Charging in the boost mode continues until the Dynamic Boost control system ends the boost mode or the boost time limit expires (boost time limit set to 24 hours by default). After operating in boost mode the charger switches to Float mode (see section 9.2). If the charger is configured for flooded lead-acid batteries the charger will engage HELIX mode after operating in Float for a short time.

9.2. Float Mode

Float mode is used to maintain stationary batteries and AGM starting batteries in a fully charged state. When the charger is in Float mode the output voltage is maintained at the float voltage setting. See the inside cover label for original factory configuration float value.

Configuration	Patton Tupa	Float	Voltage
Code*	Battery Type	12V	24V
	AGM	13.62	27.24
	FLA	13.31	26.62
GEN	NCD	14.30	28.60
	НСВ	13.38	26.76
	Ultracapacitor	15.00	25.40
FHP	FLA	13.31	26.62
MAR	VRLA	13.62	27.24
	AGM/FLA	13.31	26.62
	NCD	14.30	28.60
	VRLA	13.62	27.24
NGN	AGM/FLA	13.31	26.62
	NCD	14.30	28.60
PSP	N/A	12.00	24.00

Table 18 – Factory Float Voltage Settings

*Configuration Code displayed on charger label.

9.3. Dynamic Boost[™] Mode

Dynamic Boost mode utilizes a higher voltage charge to quickly recharge batteries and ensure that all battery cells in a battery string are charged to the same level. Dynamic Boost mode automatically adjusts how long the charger remains in boost mode every recharge cycle. Dynamic Boost automatically adjusts for differing battery sizes, depths of discharge, varying load, battery age and other variables. Dynamic Boost mode safely maximizes recharge performance while cutting risks of both overcharging and undercharging associated with manual or automatic boost timers or earlier generation automatic boost control systems.

Dynamic Boost is automatically used by the charger depending on battery type selected. See the inside cover label for original factory configuration boost value. Flooded lead-acid, absorbed glass mat (AGM) and nickel-cadmium batteries are automatically charged using Dynamic Boost mode when the battery requires it. Charging in boost mode continues until the Dynamic Boost control system ends boost mode or the boost time limit expires. The boost time limit is set to 24 hours by default. Since boost charging is discouraged by most manufacturers of valve-regulated lead-acid (VRLA) batteries used in stationary applications Dynamic Boost mode is disabled when the charger battery type is VRLA. Boost is also disabled when the battery type is set to ultracapacitor.

Relatively high boost voltages are appropriate in applications where rapid charge recovery is essential or required for strict NFPA-20 fire pump or NFPA-110 emergency power system installations. Order chargers from the factory configured for fire pump/emergency power system installations or configure the charger appropriately using the keypad or SENS Setup Utility. Use of the optional remote temperature compensation probe is highly recommended to maximize charging performance and optimize battery life.

Configuration	Dottom Turno	Boost	Voltage
Code*	Battery Type	12V	24V
	AGM	14.32	28.63
	FLA	14.18	28.36
GEN	NICD	15.20	30.40
	HCB	14.40	28.80
	Ultracapacitor	Disabled	Disabled
FHP	FLA	15.70	31.40
	VRLA	Disabled	Disabled
MAR	AGM/FLA	13.80	27.60
	NCD	15.20	30.40
	VRLA	Disabled	Disabled
NGN	AGM/FLA	13.80	27.60
	NCD	15.20	30.40
PSP	N/A	Disabled	Disabled

Table 19 – Factory Boost Voltage Settings

*Configuration Code displayed on charger label.

9.4. HELIX Mode

HELIX (High Efficiency, Llfe-eXtending) mode significantly increases the life of flooded lead-acid starting batteries. Battery engineers confirm that continuous flooded SLI (starting batteries) are all designed for vehicle use where they are NOT continuously float charged. Continuous float charging <u>flooded SLI</u> <u>batteries</u> causes these batteries' polyethylene battery separators to oxidize much sooner than would occur in vehicles, where charging is intermittent. Premature separator failure in turn causes earlier failure of the battery than would occur in a vehicle application. Because HELIX allows battery separators to last their entire design life, HELIX also substantially reduces the risk of catastrophic failure of flooded lead-acid batteries.

HELIX is active when the charger is set at the factory for flooded lead-acid battery type with configuration code "GEN" (see inside cover label for configuration code). HELIX operates automatically and no configuration is required by the operator. HELIX mode can be enabled/disabled using the keypad, the SENS Setup Utility, or by selecting a different battery type.

HELIX mode adds two DC output voltage settings to the traditional Boost and Float voltages. These are called Eco-Float and Refresh. The Eco-Float voltage is just above battery open circuit voltage, below traditional float. Refresh voltage is approximately halfway between Float and Boost voltage.

When HELIX is operating, the charger spends more than 90% of its operating hours in the Eco-Float mode. In this mode the charger uses less energy and substantially reduces the rate at which water is lost from the battery. If there are no power outages or other battery discharge events the charger periodically transitions from Eco-Float mode to Refresh mode to ensure that the battery remains fully charged. After operating in Refresh mode the charger reverts to Eco-Float mode.

9.5. Ultracapacitor Mode

Ultracapacitor mode is used to charge ultracapacitors rather than batteries. The AC LED will flash green to indicate ultracapacitor mode. The charger output voltage in ultracapacitor mode is 15V for 12V ultracapacitors and 25.4V for 24V ultracapacitors. Dynamic Boost mode is disabled for operation with ultracapacitors.

9.6. Charging Low or Zero-volt Batteries

The charger will initially charge/commission zero-volt or fully discharged batteries without special user intervention. The charger will charge for approximately 5 minutes to determine if the battery voltage will begin to rise. If the voltage rises properly the charger will continue to charge the battery normally using standard output settings (see section 9.7 if alternate output settings are required). If the voltage does not rise appropriately within 5 minutes the charger will shut down. This shut down prevents long-term overcharge of a 12V battery in the event of a mismatched battery (a 12V battery is connected to a 24V system). After correcting a mismatched condition, cycle AC and DC power to reset the charger and begin operation.

9.7. Commissioning Batteries

Initially charge/commission zero charge batteries with configurable output voltage and current by activating Commissioning Mode from the keypad or SENS Setup Utility. Using the keypad, navigate to the "Battery Set-up" menu to enable commissioning and configure commissioning voltage, current and duration. Select the appropriate output for chargers with multiple outputs. Each output is configured independently. Commissioning is not available for VRLA, AGM, power supply and ultracapacitor battery types. During commissioning the Over Voltage Shutdown alarm occurs at approximately 102% of the commissioning charge voltage and temperature compensation is not active. After commissioning completes, the charger will automatically revert to the settings configured for normal charging, including temperature compensation and the Over Voltage Shutdown alarm.

9.8. Battery Check

Run a Battery Check test to determine if a battery can support a load. Battery Check will reduce charger output voltage to a configurable backstop level to permit the battery to support the load. Activate a Battery Check using the keypad or SENS Setup Utility. Using the keypad, navigate to the "Battery Check" menu to enable a Battery Check and configure battery check minimum voltage and duration. Select the appropriate output for chargers with multiple outputs. Each output is configured independently. Upon completion of the test, the LCD will display whether the test passed or failed for ten seconds or until the "Enter" key is pressed. If the audible alarm is enabled, a single beep occurs when the battery check results are displayed. Schedule a Battery Check to run automatically by setting the Scheduled Battery Check interval in the "Battery Check" menu. An in-progress Battery Check activates a fast flashing green DC LED. Battery Check failure activates a fast flashing yellow DC LED. Alarm/communications circuit board BATTERY CHECK relay contacts change to Fail state after delay when alarm is assigned to relay contacts. Clear a failed Battery Check" option and pressing the UP arrow.

When chargers are connected to load share, initiating a battery check on one charger will automatically initiate a simultaneous battery check on connected charger(s).

IMPORTANT: A load less than 3% of the charger output maximum current rating may cause inaccurate battery check results. If the system load is typically lower than 3% disable the Scheduled Battery Check feature. Battery Check will not indicate whether a battery is healthy enough to start a generator or engage switchgear relays for chargers in typical genset or switch gear applications without a continuous current load.

9.9. Restore Factory Defaults

Restore factory defaults using the front panel keypad by scrolling to the "Battery Set-up" menu and selecting "Restore Factory Default Settings." The following values will revert to original factory settings:

- Battery type
- Cell count
- Float Voltage
- Boost Voltage
- Battery Discharge Voltage
- Low DC Voltage
- Battery End of Discharge Voltage
- Low Crank Voltage
- High DC Voltage
- Battery Check Voltage
- Over Voltage Shutdown

- Charge voltage temperature compensation
- Auto Boost Time Limit
- Periodic Scheduled Boost Interval
- Periodic Scheduled Boost Duration
- Low Current Alarm
- Battery Check Interval
- Battery Check Duration
- Commissioning Time
- Commissioning Charge Voltage
- Commissioning Current

9.10. Keypad Operation

The front panel keypad provides the ability to adjust charger settings without the SENS Setup Utility.

9.10.1. Security Code Protection

Chargers may be security code protected to ensure only authorized personnel may adjust charger settings. The default security code is 000000 meaning security code is not enabled. Change the security code to a unique value by scrolling to the "Service Tools" menu and then the "Change Security Code" option. Contact SENS Customer Service if a custom password is lost or forgotten (800-742-2326 or www.sens-usa.com).

9.10.2. Menu Navigation

Use the keypad to scroll through settings to view and adjust. The keypad provides X-Y navigation with main fields up and down and details within each field left and right (see Figure 15). Press the up and down arrow keys to scroll through main menu options. Press the left and right arrow keys to scroll through data available within each menu. Value adjustments are made with the up and down arrow keys. Press center Enter key to return to main fields. Press center Enter key twice to return to Home screen.

Step 1	爺 or ↓ for main fields
Step 2	\Leftrightarrow or \Rightarrow for details within each main field
	û or
Step 4	← to return to main fields
Step 5	← to return to Home screen

Figure 15 – Menu Navigation

9.10.3. Menu Options

Input, output, temperature and alarm status are displayed on the front panel LCD by default. Press the UP or DOWN arrow to access additional menus as described below. If an option described below is not displayed it is likely because the option or an associated parameter is not set to active or the "UI Access Control" is set to a restricted state. Absolute maximum voltage limits apply to all output and alarm settings. A message is displayed indicating an adjustment is limited due to settings conflict. Chargers with multiple outputs require selecting the appropriate output before configuring. Select the desired output by pressing the UP or DOWN arrow when prompted to "Select DC Output." Each output must be configured individually.

Main Menus	Configurable/Viewable	Parameter Descriptions
(Press up and down	Parameters	
arrows to scroll	(Press left and right arrows	
through Main Menu	to scroll through choices	
Options)	within each Menu Option)	
Meters	AC Input	AC input voltage and frequency
	Select DC Output (multiple output	Select output to view specific status
	models only)	
	DC Output (voltage)	DC output voltage and current
	DC Output <i>(power)</i>	DC output watts and % of rated output being provided
	Battery Temp.	Temperature at battery if a remote
	···· / · ·	temperature sensor is connected
	Internal Temp.	Temperature inside charger
Boost Settings	Auto Boost Delay	Adjust amount of time from 0 to 5 minutes
		to delay before entering Boost mode after
		power is cycled or battery type is changed.
		Delay affects all outputs for multiple output
		models.
	Select DC Output (multiple output models only)	Select output to adjust specific settings
	Auto-Boost	Enable or disable Dynamic Boost mode
	Auto Boost Limit	Adjust the maximum amount of time charger
		will be in Dynamic Boost mode from 1 to 100
		hours. The Boost time limit is reset if charger
		power is cycled or an engine crank is
		detected.
	Boost Duration	Adjust amount of time charger will be in
		scheduled periodic Boost mode from 1 to
		100 hours. The Boost timer is reset if charger
		power is cycled
	Scheduled Boost	Adjust amount of time between periodic
		scheduled Boost events from 1 to 180 days.
		Set to OFF to disable.
	Run Timed Boost	Start or stop a manual Boost cycle. Will
		operate in Boost mode until the Boost
		Duration expires.
Output Settings	Select DC Output (multiple output models only)	Select output to adjust specific settings
	Float Voltage	Adjust output Float voltage from
		8 to 34V, must be greater than 60% of Boost
		setting
	Boost Voltage	Adjust output Boost voltage from 8 to 34V,
		must be same or greater than Float setting,
		must not be greater than 166% of Float
		setting
	HELIX-EcoFloat	Enable or disable HELIX mode
	Current Limit	Adjust current limit from 25% to 100% of
		nominal current rating. Charger current limit
		is governed to this value.
	Temp. comp./°C	Adjust temperature compensation slope

		from 0 to -0.30%V/°C		
Alarms & Settings	Low Cranking	Press UP arrow to reset/clear Low Cranking		
		alarm		
	Battery Check	Press UP arrow to reset/clear Battery Check		
		alarm		
	Alarm Delay Time	Adjust amount of time to delay activation of		
		alarms after alarm event takes place from 5		
		to 60 seconds. Alarm/comms circuit board		
		alarm relay contacts and alarms on		
		communications ports are delayed; LED		
		alarm indication is not delayed. Delay affect		
		all outputs for multiple output models.		
	Ground Fault Alarm	Enable or disable ground fault alarm. Alarm		
		enabled/disabled on all outputs for multiple		
		output models.		
	Select DC Output (multiple output	Select output to adjust specific settings		
	models only)			
	Low Crank Alarm	Adjust setpoint to trigger Low Crank alarm		
		from 6V to 98% of Float, must be at least 2%		
		less than Float setting		
	End Discharge	Adjust setpoint to trigger Battery End-of-		
		Discharge alarm, must be less than Low DC		
		setting		
	Low DC Voltage	Adjust setpoint to trigger Low DC voltage		
		alarm, must be greater than End Discharge		
		setting and less than Battery Discharging		
		setting Adjust setpoint to trigger Battery Discharg		
	Batt Discharging			
		alarm, must be between Low DC setting and		
		98% of Float setting or Eco-Float setting		
		when HELIX is active		
	High DC Voltage	Adjust setpoint to trigger High DC voltage		
		alarm from 8 to 35V, must be greater than		
		Boost by 2% of Float setting, must be less		
		than 40% higher than Boost setting		
	Overvolt Fault	Adjust setpoint to trigger Over Voltage		
		Shutdown alarm from 8 to 35V, must be		
		greater than High DC setting		
	Low Current	Adjust setpoint to trigger Low Current alarm		
		from 0% to 50% of nominal current		
Battery Set-up	Select DC Output (multiple output	Select output to adjust specific settings		
buttery set up	models only)			
	Battery Select (type)	Select type of battery to be charged -		
		flooded lead-acid, AGM, nickel-cadmium		
		VRLA, power supply or ultracapacitor.		
	Battery Select (cells)	Adjust number of series cells in battery strin		
	Batt Commission (voltage)	Adjust battery commissioning output voltag		
	batt commission (voltage)	from float voltage to 34V, must be greater		
		than or equal to Float voltage		
	Batt Commission (current)	Adjust battery commissioning output currer		
	Patt Commission (duration)	from 5% to 100% of nominal current rating		
	Batt Commission (duration)	Adjust battery commissioning hours from 1		
		to 120 hours		
	Batt Commission (enable)	Start or stop commissioning cycle. Charger		
		will deliver commissioning voltage and		

		current until commissioning hours expire.
	Restore Factory Default Settings	Restore settings to factory configuration
Other Settings	Relay Assignment	Selection alarm relay assignments based on
0		application (see Tables 7-9)
	Audio Alarm Mode	Mute or enable audible alarm indication
	Keypad Click	Mute or enable audible beep upon keypad
		button press
	Minimum System Number of Chargers	Enable or disable whether alarm is indicated
	winning system withber of chargers	or not. Alarm active when the number of
		charger modules active on SENSbus is less
		than the minimum charger count. Disabled
		by default, meaning no alarm. See Error
		Code 301 for further details.
	DC Output #A	Enable or disable output A for multiple
	DC Output #A	
		output models
	DC Output #B	Enable or disable output B for multiple
		output models
	DC Output #C	Enable or disable output C for multiple
		output models
	DC Output #D	Enable or disable output D for multiple output models
	Set Output	Assign charger modules to each S2/S4 output
		for multiple output models
Battery Check	Select DC Output (multiple output models only)	Select output to adjust specific settings
	Battery Check	Start or stop a manual Battery Check.
	Batt Check Time	Adjust amount of time to run Battery Check
		from 1 to 60 minutes
	Batt Check Vmin	Adjust minimum voltage allowed during
		Battery Check test, must be greater than
		End-of-Discharge voltage and less than 98%
		Float voltage
	Sched Batt Check	Adjust amount of time between scheduled
		Battery Check tests from 1 to 90 days
	Next Sched Batt Check	View time until next scheduled Battery
		Check test
Service Tools	Relay Test	Press UP arrow to set all alarm relays and
		DOWN arrow to clear all relays
	Display Test	Press UP arrow to set all LCD segments black
		and DOWN arrow to clear all LCD segments
	Internal Voltages	View internal rail voltages for
	internal voltages	troubleshooting purposes. Correct values are
		approximately 3.3V, 5V and 11V.
	UI Access Control	Select allowed user interface access. Access
	of Access control	options include read-only viewing, normal
		access or full access adjustments for
		advanced users.
	Change Segurity Code	
	Change Security Code	Change security code to desired 6 digits. The
		default security code is 000000 (disabled).
		Upon entering a security code, the display
		will automatically prompt user for the code
		to access protected menus. Menus are
		protected depending on configured level of
		access (see UI Access Control definitions
		above).

	Relock Access	Exit Service Mode and relock access
I-O Bus Settings	I-O Configuration	Select RTU or ASCII Modbus (RS-485). Set to
		OFF to disable Modbus communications.
	I-O Configuration I-O Address	Adjust Modbus slave address from 1 to 255
		(RS-485). Set to OFF to disable Modbus
		communications.
	I-O Configuration Parity Bit	Set Modbus (RS-485) parity to none, even or
		odd
	I-O Configuration Baud Rate	Adjust Modbus (RS-485) baud rate, 57.6
		Kbps maximum
	Modbus Configuration Write	Enable or disable write access via Modbus
	J1939 Configuration BCH1 Output	Assign charger output for J1939 battery
		charger address to 1. J1939 address 1 (main
		charger) is assigned to charger output A by
		default.
	J1939 Configuration BCH2 Output	Assign charger output for J1939 battery
		charger address 2. For multiple output
		models, J1939 address 2 (auxiliary charger) is
		assigned to output B by default.
	J1939 Configuration Veh Sys Instance	Adjust J1939 Vehicle System Instance from 0
		to 15
	J1939 Configuration Funct Instance	Adjust J1939 Function Instance from 0 to 31
	J1939 Configuration ECU Instance	Adjust J1939 ECU Instance from 0 to 7
	J1939 Configuration Extended Status	Enable or disable receiving extended J1939
		data
Unit Information	Serial No.	Charger serial number
	Revision	Software revision currently loaded on
		alarms/comms circuit board
	Copyright	MicroGenius copyright year

9.11. Configuration with SENS Setup Utility

Use the SENS Setup Utility to program the charger with custom settings rather than using the keypad. Custom configuration is typically completed by OEMs, qualified dealers/distributors, and packagers. The setup utility allows configuration of all charger settings including alarm relay assignments.

9.11.1. Connect SENSbus Adapter

Communication between a computer and the charger using the SENS Setup Utility requires connection of the SENSbus Adapter (shipped with SENS Setup Utility kit). Models with the optional TCP/IP circuit board include an internal SENSbus Adapter and do not require connection of a separate device. Connect the provided USB cable from the USB port on a PC to the SENSbus Adapter port labeled "USB." Connect the provided network cable from the SENSbus Adapter RJ-45 port labeled "SENSbus" to the RJ-45 port on the charger. Two SENSbus RJ-45 ports are provided on the inside panel between the AC and DC connections (see Figures 1-3 for location in charger). The ports are in parallel and either port may be used for the SENSbus Adapter connection. See the SENS Setup Utility user manual for information on configuring the charger.

9.12. Temperature Compensation

The charger is temperature compensated to match the negative temperature coefficient of the battery. When temperature compensation is active, the output voltage will increase slightly as temperature decreases, decrease as temperature increases, and is clamped at 0°C (32°F) and +40°C (122°F) to protect against extremely high or low output voltage (see Figure 16).

The charger automatically includes local temperature compensation using internal on-board sensors. Remote temperature compensation is enabled when an optional external sensor is located at the batteries and connected to the remote temperature sensor terminal block in the charger (see section <u>6.6</u> for connections). Chargers with multiple output terminals include multiple remote temperature sensor terminal blocks (connect one sensor for each output). Remote temperature compensation is required for ultracapacitor charging and should be used in applications where battery and charger are located in different ambient conditions. Chargers connected to load share only require a remote temperature sensor connected to one charger. Temperature Compensation is set to a slope of -0.18% per °C by default for operation with batteries. The temperature Compensation slope for ultracapacitors is set by the factory and is not adjustable. Temperature compensation is disabled by connecting a short across the remote temperature sensor terminal block(s), using the keypad or by setting the temperature compensation slope to zero using the SENS Setup Utility. The temperature present at a sensor (local or remote) is displayed on the front panel LCD. Actual battery temperature is only displayed if the optional remote temperature sensor is connected to the charger and placed at the batteries.

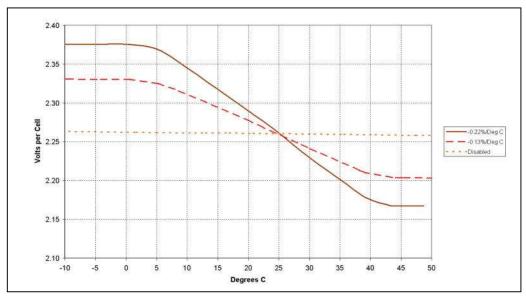


Figure 16 – Example Temperature Compensation Curves

9.13. Load Share Charger Operation

Multiple chargers may be connected in parallel to provide charger redundancy and increased charging current. Load sharing chargers are fault tolerant; one charger failure will not cause failures in paralleled chargers.

9.13.1. Load Sharing and Synchronization

Connection of a network cable between chargers using the SENSbus RJ-45 connectors (see section 6.9) automatically initiates load sharing synchronization of operating modes. Chargers will share the current load within ±10%. For proper load share operation, a 120-ohm terminator is required at the ends of the bus. Chargers intended for load sharing must be configured with the same output settings in order to load share properly. A charger in a multi-charger load sharing system with different output settings will not load share properly. Corresponding outputs must be configured with the same output settings for chargers with multiple outputs. Load sharing operates independently on each output for chargers with multiple outputs. Connect corresponding outputs of load sharing chargers in parallel (i.e. connect output A to output A). Load sharing will not occur if non-corresponding outputs are connected (e.g. do not connect output A to output B). The LOAD SHARE FAIL alarm will occur any time a charger is unable to load share. If a charger in a multi-charger load sharing system fails or is disconnected the remaining chargers will still load share and ignore the faulted charger. Each load sharing charger will alarm independently using individually configured alarm setpoints.

The output voltage and current of each individual charger will be shown on the front panel LCD. If an optional remote alarm/communications panel accessory (not included internal to charger) is connected it will display only the system output voltage and current. An alarm/communications circuit board that is configured for an individual charger can be set to show system information by using the SENS Setup Utility.

Chargers connected in parallel without the load sharing network cable will operate but without synchronization. Current is not shared between chargers, Boost and HELIX modes are not synchronized and the system voltage is not displayed on the LCD. The chargers must be set for the same voltage range (12V or 24V) and Float voltage. When load sharing is disabled, boost mode should also be disabled on all but one charger to avoid conflicts between chargers. As a result, redundancy of Boost output voltage is not included when load sharing is not employed.

9.14. Remote Alarm/Communications Panel Accessory

The optional remote alarm/communications panel accessory provides additional alarm relay contacts and the ability to adjust and communicate with multiple chargers using one external device. Connection of a network cable between the accessory and charger(s) using the SENSbus RJ-45 connectors (see section 6.10) automatically initiates communication. For proper operation, a 120-ohm terminator is required at the ends of the bus. Adjust configuration and view status using the remote panel keypad and display. See section 9.10 for keypad operation.

10 J1939 COMMUNICATIONS

See data messages below for read-only information available using J1939. Each charger automatically broadcasts a data message once per second after it has joined the J1939 network. Charger operation parameters may not be configured using J1939 communications.

In most cases, charger default J1939 settings are sufficient to automatically begin using J1939 communications after connecting the charger to the network. Use the SENS Setup Utility to adjust J1939 settings (e.g. baud rate, vehicle system instance, etc.) if required.

J1939 Data	Bits	Details
Battery Charger State	0-3	0 = OFF, 1 = boost charge, 2 = float charge, 13 = battery
		failure/too hot/cold to charge, 14 = charger failure, 15 = no
		status available
AC Power Line State	4-5	0 = AC OFF, 1 = AC ON, 2 = sensing error, does not indicate
		power out of specification, 3 = no status available
Thermal Limit Alarm*	6-7	0 = OK, 1 = Fail, 2 = sensor failure, 3 = no status available
Output Voltage	8-23	0 to 3212.75V in 0.05V increments, 0xFFFF = data not available,
		0xFEFF = hardware error
Output Current	24-39	-1600.00 to +1612.75A in 0.05A increments, 0xFFFF = data not
		available, 0xFEFF = hardware error
High DC Voltage	42-43	0 = OK, 1 = Fail, 2 = sensor failure, 3 = no status available
Alarm*		
Low DC Voltage Alarm*	44-45	0 = OK, 1 = Fail, 2 = sensor failure, 3 = no status available
Low Cranking Voltage	46-47	0 = OK, 1 = Fail, 2 = sensor failure, 3 = no status available
Alarm*		
Invalid Settings Alarm*	48-49	0 = OK, 1 = Fail, 2 = sensor failure, 3 = no status available
*Ontional must enable SE	etch 2M	extensions using SENS Setup Utility

10.1. J1939 Data Messages

Optional, must enable SENS data extensions using SENS Setup Utility

11 MODBUS COMMUNICATIONS

Modbus communications settings may be configured using the keypad or SENS Setup Utility prior to executing communications. Modbus is provided over RS-485 using RTU or ASCII mode or over TCP/IP as an option.

Setting	Value
Configuration	RTU
Baud Rate	19200
Data Bits	8
Parity	Even
Stop Bits	1
Slave Address	10

Table 20 – Modbus Default Settings

11.1. TCP/IP Modbus

Modbus communications over TCP/IP is optional and requires configuration using the DeviceInstaller Software provided by Lantronix Inc.

Table 21 - TCP/TP Default Settlings						
Value						
0.0.0.0 DHCP/AUTO						
N/A						
N/A						
502						

Table 21 – TCP/IP Default Settings

11.1.1. TCP/IP Settings Configuration

Install the DeviceInstaller Software provided by Lantronix Inc. at <u>https://www.lantronix.com/products/deviceinstaller/</u>.

After installing and executing the DeviceInstaller software, the search command on the toolbar menu will locate the device. Figure 17 displays the software screen when the device is located.

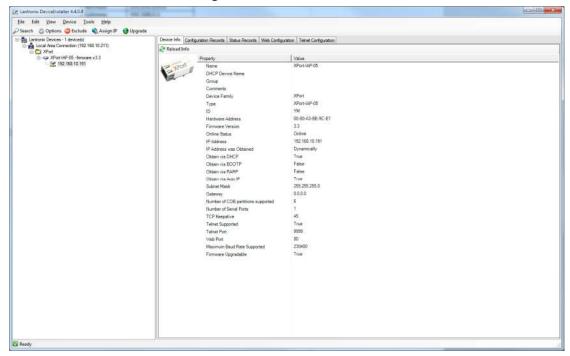


Figure 17 – Lantronix Device Located

Use the DeviceInstaller software to change the IP Address of the TCP/IP module by using the Assign IP command in the menu toolbar. The software will request the Device Identification (hardware address) of the module. This address is identified as "MAC" and is displayed on the charger label located on the outside of the charger enclosure. This address is unique to each charger. Follow the software dialogue to complete the IP address setup.

Address High		Addres	s Low	News	Description	L lusites	Scale
Decimal	Hex	Decimal	Hex	Name	Description	Units	Factor
0	0x000	1	0x001	System Serial Number	Serial Number of System the device	Num	1
U	00000	T	00001	System Senar Number	was built into and shipped part of	num	T
2	0x002	3	0x003	Program Revision	Version of the main program	Num	1
4	0x004	5	0x005	Bootloader Version	Version of bootloader	Num	1
6	0x006	7	0x007	Туре	Device type	Enum	1
8	0x008	9	0x009	Serial	Serial Number of the Device	Num	1
10	0x00A	11	0x00B	Build Date	Year (16bit), month(8bit), day(8bit)	Num	1
12	0x00C	13	0x00D	Model Num 1_4	Model number character	bit	1
14	0x00E	15	0x00F	Model Num 5_8	Model number character	bit	1
16	0x010	17	0x011	Model Num 9_12	Model number character	bit	1
18	0x012	19	0x013	Model Num 13_16	Model number character	bit	1
20	0x014	21	0x015	Model Num 17_20	Model number character	bit	1
22	0x016	23	0x017	Model Num 21_24	Model number character	bit	1
24	0x018	25	0x019	Model Num 25_28	Model number character	bit	1
26	0x01A	27	0x01B	Model Num 29_32	Model number character	bit	1
28	0x01C	29	0x01D	Watt Minutes High	For Odometer	bit	1
30	0x01E	31	0x01F	Watt Minutes Low	For Odometer	bit	1
32	0x020	33	0x021	Minutes in Charge High	For Odometer	bit	1
34	0x022	35	0x023	Minutes in Charge Low	For Odometer	bit	1
26	0,024	27	0,025	Number of Crenks Detected	Number of times the crank logger has	Niccos	1
36	0x024	37	0x025	Number of Cranks Detected	been tripped	Num	1
38	0x026	39	0x027	Number of Cranks Under	Number of times the crank logger has	Num	1

11.2. Modbus Holding Registers

Addres	ss High	Addre	ss Low	Name	Description	Units	Scale
				Threshold	detected a bad battery		
40	0x028	41	0x029	Autoboost Lockout Duration	Autoboost Lockout Duration	Num	60
210	0x0D2	211	0x0D3	Output A Alarms	Alarm status bits (see section 11.3)	Bits	1
212	0x0D4	213	0x0D5	Output A Voltage	Voltage currently being supplied by the charger to the battery	V	32768
214	0x0D6	215	0x0D7	Output A Output Current	Current currently being supplied by the charger to the battery	А	32768
216	0x0D8	217	0x0D9	Output A Power Output	Power currently being supplied by the charger	w	32768
218	0x0DA	219	0x0DB	Output A Factory Float Setting	Float Cell Voltage set at Factory	V/cell	32768
220	0x0DC	221	0x0DD	Output A Factory Boost Setting	Boost Cell Voltage set at Factory	V/cell	32768
222	0x0DE	223	0x0DF	Output A Remote Temp	Remote temp sense temperature in 0.0°C	°C	32768
224	0x0E0	225	0x0E1	Output A Internal Temp	Ambient air temperature near charger input connectors (tp 1)	°C	32768
226	0x0E2	227	0x0E3	Output A Boost Elapsed Time	Boost time	Sec	1
228	0x0E4	229	0x0E5	Output A Periodic Boost Period	Interval between periodic boost events (0 = disabled)	Sec	1
230	0x0E6	231	0x0E7	Output A AC Line Frequency	AC Line Frequency	Hz	10
232	0x0E8	233	0x0E9	Output A AC Line Voltage 1	AC Line 1 Voltage	V	32768
234	0x0EA	235	0x0EB	Output A AC Line Current 1	AC Line 1 Current (not applicable to single phase chargers)	А	32768
236	0x0EC	237	0x0ED	Output A AC Line Voltage 2	AC Line 2 Voltage (not applicable to single phase chargers)	V	32768
238	0x0EE	239	0x0EF	Output A AC Line Current 2	AC Line 2 Current (not applicable to single phase chargers)	А	32768
240	0x0F0	241	0x0F1	Output A AC Line Voltage 3	AC Line 3 Voltage (not applicable to single phase chargers)	V	32768
242	0x0F2	243	0x0F3	·	AC Line 3 Current (not applicable to single phase chargers)	А	32768
244	0x0F4	245	0x0F5	Output A Battery Check Duration	Duration of battery check	Sec	1
246	0x0F6	247	0x0F7	Output A Battery Check Interval	Interval between scheduled automatic battery checks	Sec	1
248	0x0F8	249	0x0F9	Output A Number of Chargers	Number of chargers detected on SENSbus, 0 - 30	Num	1
250	0x0FA	251	0x0FB	Output A Redundancy Level	Number of redundant output chargers	Num	1
252	0x0FC	253	0x0FD	Output A Extended Status	Current state of alarm/comms circuit board (see section 11.4)	bit	1
272	0x110	273	0x111	Output A Maximum Power	Maximum rated power	V/Cell	32768
274	0x112	275	0x113	Output A Maximum Voltage	Maximum rated voltage in x.xx V	V/Cell	32768
276	0x114	277	0x115	Output A Maximum Current	Maximum rated current in x.xxA	А	32768
278	0x116	279	0x117	Output A Program Float Setting	Float Cell Voltage used in Program Mode	V/Cell	32768
280	0x118	281	0x119	Output A Program Boost Setting	Boost Cell Voltage used in Program Mode	V/Cell	32768

Addres	s High	Addre	ss Low	Name	Description	Units	Scale
282	0x11A	283	0x11B	Output A Program Mode	Mode callouts for Program Mode setting (battery type etc.)	Custom	1
284	0x11C	285	0x11D	Output A Program Cell Count	Number of cells set in Program Mode	Cells	32768
286	0x11E	287	0x11F	Output A Program Temp comp slope	In 0.xx°C per output volt x -1	°C/V	32768
288	0x120	289	0x121	Output A Low DC Program	Alarm setpoint for low DC (used for Program Mode setting)	V/Cell	32768
290	0x122	291	0x123	Output A Low Crank Program	Alarm setpoint for low Crank (used for Program Mode setting)	V/Cell	32768
292	0x124	293	0x125	Output A Low Current Program	Alarm setpoint for low Current (used for Program Mode setting)	А	32768
296	0x128	297	0x129	Output A High DC Program	Alarm setpoint for high DC (used for Program Mode setting)	V/Cell	32768
298	0x12A	299	0x12B	Output A OVSD Program	Alarm setpoint for OVSD (used for Program Mode setting)	V/Cell	32768
300	0x12C	301	0x12D	Output A Batt Discharge Program	Alarm setpoint for Batt Discharge (used for Program Mode setting)	V/Cell	32768
302	0x12E	303	0x12F	Output A Batt End Discharge Program	Alarm setpoint for End Discharge (used for Program Mode setting)	V/Cell	32768
304	0x130	305	0x131	Output A Program Boost Time Limit	Boost time limit (used for Program Mode setting)	Hr	3600
306	0x132	307	0x133	Output A Current Limit Setting	Current Limit setpoint in % of output current as a 10 bit value	% Rated A	32768
308	0x134	309	0x135	Output A Default Output Helix Float Time	Helix Float Time	Hr	3600
310	0x136	311	0x137	Output A Default Output Helix Refresh Time	Helix Refresh Time	Hr	3600
312	0x138	313	0x139	Output A Default Output Helix Eco Time	Helix Eco Time	Hr	3600
314	0x13A	315	0x13B	Output A Default Output Periodic Boost Time	Interval between scheduled Periodic Boost	Days	86400
316	0x13C	317	0x13D	Output A Battery Check Voltage Setting	Battery check failure threshold	V/Cell	32768
318	0x13E	319	0x13F	Output A Battery Check Interval	Interval between scheduled automatic battery checks	Days	86400
320	0x140	321	0x141	Output A Battery Check Duration	Duration of battery check	Min	60
322	0x142	323	0x143	Output A Default Output Commissioning VPC	Commissioning VPC	V/Cell	32768
324	0x144	325	0x145	Output A Default Output Commissioning Duration	Commissioning Duration	Hr	3600
326	0x146	327	0x147	Output A Default Output Commissioning A	Commissioning Amps	А	32768
328	0x148	329	0x149	Output A Default Output Rated Power	Output Rated Power	w	32768
330	0x14A	331	0x14B	Output A Default Output Rated Current	Output Rated Current	А	32768
332	0x14C	333	0x14D	Output A Periodic Boost Duration	Periodic Boost Duration	Bits	3600
334	0x14E	335	0x14F	Channel A Min Allowed Voltage Setting	Min Allowed Voltage Setting	V/Cell	32768
354	0x162	355	0x163	Output B Alarms	Alarm status bits (see section 11.3)	Bits	1

Addres	s High	Addres	ss Low	Name	Description	Units	Scale
356	0x164	357	0x165	Output B Voltage	Voltage currently being supplied by the charger to the battery	V	32768
358	0x166	359	0x167	Output B Output Current	Current currently being supplied by the charger to the battery	А	32768
360	0x168	361	0x169	Output B Power Output	Power currently being supplied by the charger	W	32768
362	0x16A	363	0x16B	Output B Factory Float Setting	Float Cell Voltage set at Factory	V/cell	32768
364	0x16C	365	0x16D	Output B Factory Boost Setting	Boost Cell Voltage set at Factory	V/cell	32768
366	0x16E	367	0x16F	Output B Remote Temp	Remote temp sense temperature in 0.0°C	°C	32768
368	0x170	369	0x171	Output B Internal Temp	Ambient air temperature near charger input connectors (tp 1)	°C	32768
370	0x172	371	0x173	Output B Boost Elapsed Time	Boost time	Sec	1
372	0x174	373	0x175	Output B Periodic Boost Period	Interval between periodic boost events (0 = disabled)	Sec	1
374	0x176	375	0x177	Output B AC Line Frequency	AC Line Frequency	Hz	10
376	0x178	377	0x179	Output B AC Line Voltage 1	AC Line 1 Voltage	V	32768
378	0x17A	379	0x17B	Output B AC Line Current 1	AC Line 1 Current (not applicable to single phase chargers)	А	32768
380	0x17C	381	0x17D	Output B AC Line Voltage 2	AC Line 2 Voltage (not applicable to single phase chargers)	V	32768
382	0x17E	383	0x17F	Output B AC Line Current 2	AC Line 2 Current (not applicable to single phase chargers)	А	32768
384	0x180	385	0x181	Output B AC Line Voltage 3	AC Line 3 Voltage (not applicable to single phase chargers)	V	32768
386	0x182	387	0x183	Output B AC Line Current 3	AC Line 3 Current (not applicable to single phase chargers)	А	32768
388	0x184	389	0x185	Output B Battery Check Duration	Duration of battery check	Sec	1
390	0x186	391	0x187	Output B Battery Check Interval	Interval between scheduled automatic battery checks	Sec	1
392	0x188	393	0x189	Output B Number of Chargers	Number of chargers detected on SENSbus, 0 - 30	Num	1
394	0x18A	395	0x18B	Output B Redundancy Level	Number of redundant output chargers	Num	1
396	0x18C	397	0x18D	Output B Extended Status	Current state of alarm/comms circuit board (see section 11.4)	bit	1
416	0x1A0	417	0x1A1	Output B Maximum Power	Maximum rated power	V/Cell	32768
418	0x1A2	419	0x1A3	Output B Maximum Voltage	Maximum rated voltage in x.xx V	V/Cell	32768
420	0x1A4	421	0x1A5	Output B Maximum Current	Maximum rated current in x.xxA	А	32768
422	0x1A6	423	0x1A7	Output B Program Float Setting	Float Cell Voltage used in Program Mode	V/Cell	32768
424	0x1A8	425	0x1A9	Output B Program Boost Setting	Boost Cell Voltage used in Program Mode	V/Cell	32768
426	0x1AA	427	0x1AB	Output B Program Mode	Mode callouts for Program Mode setting (battery type etc.)	Custom	1
428	0x1AC	429	0x1AD	Output B Program Cell Count	Number of cells set in Program Mode	Cells	32768
430	0x1AE	431	0x1AF	Output B Program Temp comp slope	In 0.xx°C per output volt x -1	°C/V	32768

Addres	ss High	Addre	ss Low	Name	Description	Units	Scale
432	0x1B0	433	0x1B1	Output B Low DC Program	Alarm setpoint for low DC (used for Program Mode setting)	V/Cell	32768
434	0x1B2	435	0x1B3	Output B Low Crank Program	Alarm setpoint for low Crank (used for Program Mode setting)	V/Cell	32768
436	0x1B4	437	0x1B5	Output B Low Current Program	Alarm setpoint for low Current (used for Program Mode setting)	А	32768
440	0x1B8	441	0x1B9	Output B High DC Program	Alarm setpoint for high DC (used for Program Mode setting)	V/Cell	32768
442	0x1BA	443	0x1BB	Output B OVSD Program	Alarm setpoint for OVSD (used for Program Mode setting)	V/Cell	32768
444	0x1BC	445	0x1BD	Output B Batt Discharge Program	Alarm setpoint for Batt Discharge (used for Program Mode setting)	V/Cell	32768
446	0x1BE	447	0x1BF	Output B Batt End Discharge Program	Alarm setpoint for End Discharge (used for Program Mode setting)	V/Cell	32768
448	0x1C0	449	0x1C1	Output B Program Boost Time Limit	Boost time limit (used for Program Mode setting)	Hr	3600
450	0x1C2	451	0x1C3	Output B Current Limit Setting	Current Limit setpoint in % of output current as a 10 bit value	% Rated A	32768
452	0x1C4	453	0x1C5	Output B Default Output Helix Float Time	Helix Float Time	Hr	3600
454	0x1C6	455	0x1C7	Output B Default Output Helix Refresh Time	Helix Refresh Time	Hr	3600
456	0x1C8	457	0x1C9	Output B Default Output Helix Eco Time	Helix Eco Time	Hr	3600
458	0x1CA	459	0x1CB	Output B Default Output Periodic Boost Time	Interval between scheduled Periodic Boost	Days	86400
460	0x1CC	461	0x1CD	Output B Battery Check Voltage Setting	Battery check failure threshold	V/Cell	32768
462	0x1CE	463	0x1CF	Output B Battery Check	Interval between scheduled automatic battery checks	Days	86400
464	0x1D0	465	0x1D1	Output B Battery Check Duration	Duration of battery check	Min	60
466	0x1D2	467	0x1D3	Output B Default Output Commissioning VPC	Commissioning VPC	V/Cell	32768
468	0x1D4	469	0x1D5	Output B Default Output Commissioning Duration	Commissioning Duration	Hr	3600
470	0x1D6	471	0x1D7	Output B Default Output Commissioning A	Commissioning Amps	А	32768
472	0x1D8	473	0x1D9	Output B Default Output Rated Power	Output Rated Power	W	32768
474	0x1DA	475	0x1DB	Output B Default Output Rated Current	Output Rated Current	A	32768
476	0x1DC	477	0x1DD	Output B Periodic Boost Duration	Periodic Boost Duration	Bits	3600
478	0x1DE	479	0x1DF	Channel B Min Allowed Voltage Setting	Min Allowed Voltage Setting	V/Cell	32768
498	0x1F2	499	0x1F3	Output C Alarms	Alarm status bits (see section 11.3)	Bits	1
500	0x1F2 0x1F4	501	0x1F5	Output C Voltage	Voltage currently being supplied by the charger to the battery	V	32768
502	0x1F6	503	0x1F7	Output C Output Current	Current currently being supplied by the charger to the battery	А	32768
504	0x1F8	505	0x1F9	Output C Power Output	Power currently being supplied by the charger	W	32768

Address High		Address Low		Name	Description	Units	Scale
506	0x1FA	507	0x1FB	Output C Factory Float Setting	Float Cell Voltage set at Factory	V/cell	32768
508	0x1FC	509	0x1FD	Output C Factory Boost Setting	BOOST (EII VOITAGE SET AT FACTORY		32768
510	0x1FE	511	0x1FF	Output C Remote Temp	Remote temp sense temperature in 0.0°C	°C	32768
512	0x200	513	0x201	Output C Internal Temp	Ambient air temperature near charger input connectors (tp 1)	°C	32768
514	0x202	515	0x203	Output C Boost Elapsed Time	Boost time	Sec	1
516	0x204	517	0x205	Output C Periodic Boost Period	Interval between periodic boost events (0 = disabled)	Sec	1
518	0x206	519	0x207	Output C AC Line Frequency	AC Line Frequency	Hz	10
520	0x208	521	0x209	Output C AC Line Voltage 1	AC Line 1 Voltage	V	32768
522	0x20A	523	0x20B	Output C AC Line Current 1	AC Line 1 Current (not applicable to single phase chargers)	А	32768
524	0x20C	525	0x20D	Output C AC Line Voltage 2	AC Line 2 Voltage (not applicable to single phase chargers)	V	32768
526	0x20E	527	0x20F	Output C AC Line Current 2	AC Line 2 Current (not applicable to single phase chargers)	А	32768
528	0x210	529	0x211	Output C AC Line Voltage 3	AC Line 3 Voltage (not applicable to single phase chargers)	V	32768
530	0x212	531	0x213	Output C AC Line Current 3	AC Line 3 Current (not applicable to single phase chargers)	А	32768
532	0x214	533	0x215	Output C Battery Check Duration	Duration of battery check	Sec	1
534	0x216	535	0x217	Output C Battery Check Interval	Interval between scheduled automatic battery checks	Sec	1
536	0x218	537	0x219	Output C Number of Chargers	Number of chargers detected on SENSbus, 0 - 30	Num	1
538	0x21A	539	0x21B	Output C Redundancy Level	Number of redundant output chargers	Num	1
540	0x21C	541	0x21D	Output C Extended Status	Current state of alarm/comms circuit board (see section 11.4)	bit	1
560	0x230	561	0x231	Output C Maximum Power	Maximum rated power	V/Cell	32768
562	0x232	563	0x233	Output C Maximum Voltage	Maximum rated voltage in x.xx V	V/Cell	32768
564	0x234	565	0x235	Output C Maximum Current	Maximum rated current in x.xxA	А	32768
566	0x236	567	0x237	Output C Program Float Setting	Float Cell Voltage used in Program Mode	V/Cell	32768
568	0x238	569	0x239	Output C Program Boost Setting	Boost Cell Voltage used in Program Mode	V/Cell	32768
570	0x23A	571	0x23B	Output C Program Mode	Mode callouts for Program Mode setting (battery type etc.)	Custom	1
572	0x23C	573	0x23D	Output C Program Cell Count	Number of cells set in Program Mode	Cells	32768
574	0x23E	575	0x23F	Output C Program Temp comp slope	In 0.xx°C per output volt x -1	°C/V	32768
576	0x240	577	0x241	Output C Low DC Program	Alarm setpoint for low DC (used for Program Mode setting)	V/Cell	32768
578	0x242	579	0x243	Output C Low Crank Program	Alarm setpoint for low Crank (used for Program Mode setting)	V/Cell	32768
580	0x244	581	0x245	Output C Low Current Program	Alarm setpoint for low Current (used for Program Mode setting)	А	32768

Address High		Address Low		Name	Description	Units	Scale
584	0x248	585	0x249	Output C High DC Program	Alarm setpoint for high DC (used for Program Mode setting)	V/Cell	32768
586	0x24A	587	0x24B	Output C OVSD Program	Dutput C OVSD ProgramAlarm setpoint for OVSD (used for Program Mode setting)		32768
588	0x24C	589	0x24D	Output C Batt Discharge Program	Alarm setpoint for Batt Discharge (used for Program Mode setting)	V/Cell	32768
590	0x24E	591	0x24F	Output C Batt End Discharge Program	Alarm setpoint for End Discharge (used for Program Mode setting)	V/Cell	32768
592	0x250	593	0x251	Output C Program Boost Time Limit	Boost time limit (used for Program Mode setting)	Hr	3600
594	0x252	595	0x253	Output C Current Limit Setting	Current Limit setpoint in % of output current as a 10 bit value	% Rated A	32768
596	0x254	597	0x255	Output C Default Output Helix Float Time	Helix Float Time	Hr	3600
598	0x256	599	0x257	Output C Default Output Helix Refresh Time	Helix Refresh Time	Hr	3600
600	0x258	601	0x259	Output C Default Output Helix Eco Time	Helix Eco Time	Hr	3600
602	0x25A	603	0x25B	Output C Default Output Periodic Boost Time	Interval between scheduled Periodic Boost	Days	86400
604	0x25C	605	0x25D	Output C Battery Check Voltage Setting	Battery check failure threshold	V/Cell	32768
606	0x25E	607	0x25F	Output C Battery Check Interval	Interval between scheduled automatic battery checks	Days	86400
608	0x260	609	0x261	Output C Battery Check Duration	Duration of battery check	Min	60
610	0x262	611	0x263	Output C Default Output Commissioning VPC	Commissioning VPC	V/Cell	32768
612	0x264	613	0x265	Output C Default Output Commissioning Duration	Commissioning Duration	Hr	3600
614	0x266	615	0x267	Output C Default Output Commissioning A	Commissioning Amps	А	32768
616	0x268	617	0x269	Output C Default Output Rated Power	Output Rated Power	W	32768
618	0x26A	619	0x26B	Output C Default Output Rated Current	Output Rated Current	А	32768
620	0x26C	621	0x26D	Output C Periodic Boost Duration	Periodic Boost Duration	Bits	3600
622	0x26E	623	0x26F	Channel C Min Allowed Voltage Setting	Min Allowed Voltage Setting	V/Cell	32768
642	0	642	0202	Outrast D. Alamaa		Dite	1
642 644	0x282 0x284	643 645	0x283 0x285	Output D Alarms Output D Voltage	Alarm status bits (see section 11.3) Voltage currently being supplied by	Bits V	1 32768
646	0x286	647	0x287	Output D Output Current	the charger to the battery Current currently being supplied by the charger to the battery	А	32768
648	0x288	649	0x289	Output D Power Output	Power currently being supplied by the charger	W	32768
650	0x28A	651	0x28B	Output D Factory Float Setting	Float Cell Voltage set at Factory	V/cell	32768
652	0x28C	653	0x28D	Output D Factory Boost Setting	Boost Cell Voltage set at Factory	V/cell	32768
654	0x28E	655	0x28F	Output D Remote Temp	Remote temp sense temperature in 0.0°C	°C	32768

Address High		Address Low		Name	Description	Units	Scale
656	0x290	657	0x291	Output D Internal Temp	Ambient air temperature near	°C	32768
658	0x292	659	0x293	Output D Boost Elapsed Time	charger input connectors (tp 1) Boost time	Sec	1
660	0x294	661	0x295	Output D Periodic Boost Period	Dutput D Periodic Boost Interval between periodic boost		1
662	0x296	663	0x297	Output D AC Line Frequency	AC Line Frequency	Hz	10
664	0x298	665	0x299	Output D AC Line Voltage 1	AC Line 1 Voltage	V	32768
666	0x29A	667	0x29B	Output D AC Line Current 1	AC Line 1 Current (not applicable to single phase chargers)	А	32768
668	0x29C	669	0x29D	Output D AC Line Voltage 2	AC Line 2 Voltage (not applicable to single phase chargers)	V	32768
670	0x29E	671	0x29F	Output D AC Line Current 2	AC Line 2 Current (not applicable to single phase chargers)	А	32768
672	0x2A0	673	0x2A1	Output D AC Line Voltage 3	AC Line 3 Voltage (not applicable to single phase chargers)	V	32768
674	0x2A2	675	0x2A3	Output D AC Line Current 3	AC Line 3 Current (not applicable to single phase chargers)	А	32768
676	0x2A4	677	0x2A5	Output D Battery Check Duration	Duration of battery check	Sec	1
678	0x2A6	679	0x2A7	Output D Battery Check Interval	Interval between scheduled automatic battery checks	Sec	1
680	0x2A8	681	0x2A9	Output D Number of ChargersNumber of chargers detected on SENSbus, 0 - 30		Num	1
682	0x2AA	683	0x2AB	Output D Redundancy Level	Number of redundant output chargers	Num	1
684	0x2AC	685	0x2AD	Output D Extended Status	Current state of alarm/comms circuit board (see section 11.4)	bit	1
704	0x2C0	705	0x2C1	Output D Maximum Power	Maximum rated power	V/Cell	32768
706	0x2C2	707	0x2C3	Output D Maximum Voltage	Maximum rated voltage in x.xx V	V/Cell	32768
708	0x2C4	709	0x2C5	Output D Maximum Current	Maximum rated current in x.xxA	А	32768
710	0x2C6	711	0x2C7	Output D Program Float Setting	Float Cell Voltage used in Program Mode	V/Cell	32768
712	0x2C8	713	0x2C9	Output D Program Boost Setting	Boost Cell Voltage used in Program Mode	V/Cell	32768
714	0x2CA	715	0x2CB	Output D Program Mode	Mode callouts for Program Mode setting (battery type etc.)	Custom	1
716	0x2CC	717	0x2CD	Output D Program Cell Count	Number of cells set in Program Mode	Cells	32768
718	0x2CE	719	0x2CF	Output D Program Temp comp slope	In 0.xx°C per output volt x -1	°C/V	32768
720	0x2D0	721	0x2D1	Output D Low DC Program	Alarm setpoint for low DC (used for Program Mode setting)	V/Cell	32768
722	0x2D2	723	0x2D3	Output D Low Crank Program	Alarm setpoint for low Crank (used for Program Mode setting)	V/Cell	32768
724	0x2D4	725	0x2D5	Output D Low Current Program	Alarm setpoint for low Current (used for Program Mode setting)	А	32768
728	0x2D8	729	0x2D9	Output D High DC Program	Alarm setpoint for high DC (used for Program Mode setting)	V/Cell	32768
730	0x2DA	731	0x2DB	Output D OVSD Program	Alarm setpoint for OVSD (used for Program Mode setting)	V/Cell	32768

Address High		Address Low		Name	Description	Units	Scale
732	0x2DC	733	0x2DD	Output D Batt Discharge Program	Alarm setpoint for Batt Discharge (used for Program Mode setting)	V/Cell	32768
734	0x2DE	735	0x2DF	Output D Batt End Discharge Program	Alarm setpoint for End Discharge (used for Program Mode setting)	V/Cell	32768
736	0x2E0	737	0x2E1	Output D Program Boost Time Limit	Boost time limit (used for Program Mode setting)	Hr	3600
738	0x2E2	739	0x2E3	Output D Current Limit Setting	Current Limit setpoint in % of output current as a 10 bit value	% Rated A	32768
740	0x2E4	741	0x2E5	Output D Default Output Helix Float Time	Helix Float Time	Hr	3600
742	0x2E6	743	0x2E7	Output D Default Output Helix Refresh Time	Helix Refresh Time	Hr	3600
744	0x2E8	745	0x2E9	Output D Default Output Helix Eco Time	Helix Eco Time	Hr	3600
746	0x2EA	747	0x2EB	Output D Default Output Periodic Boost Time	Interval between scheduled Periodic Boost	Days	86400
748	0x2EC	749	0x2ED	Output D Battery Check Voltage Setting	Battery check failure threshold	V/Cell	32768
750	0x2EE	751	0x2EF	Output D Battery Check Interval	Interval between scheduled automatic battery checks	Days	86400
752	0x2F0	753	0x2F1	Output D Battery Check Duration	Duration of battery check	Min	60
754	0x2F2	755	0x2F3	Output D Default Output Commissioning VPC	Commissioning VPC	V/Cell	32768
756	0x2F4	757	0x2F5	Output D Default Output Commissioning Duration	Commissioning Duration	Hr	3600
758	0x2F6	759	0x2F7	Output D Default Output Commissioning A	Commissioning Amps	А	32768
760	0x2F8	761	0x2F9	Output D Default Output Rated Power	Output Rated Power	w	32768
762	0x2FA	763	0x2FB	Output D Default Output Rated Current	Output Rated Current	А	32768
764	0x2FC	765	0x2FD	Output D Periodic Boost Duration	Periodic Boost Duration	Bits	3600
766	0x2FE	767	0x2FF	Channel D Min Allowed Voltage Setting	Min Allowed Voltage Setting	V/Cell	32768

11.3. Alarm Bit Definition

Bit Ad	ldress	Name	Description		
Decimal	Hex	Name	Description		
0	0x00	Alarm AC Fail	Charger does not have usable AC input		
1	0x01	Alarm High DC	Charger output exceeds alarm threshold		
2	0x02	Alarm Low DC	Charger output below alarm threshold		
3	0x03	Alarm Charger Fail	Charger not operating because of an internal failure		
4	0x04	Alarm Over Voltage Shutdown	Charger disabled by selective overvoltage shutdown		
5	0x05	Alarm Reverse Polarity	Charger disabled because battery polarity is reversed		
6	0x06	Alarm Low Cranking	Low cranking voltage event has been detected		
7	0x07	Alarm Incompatible Battery	Charger disabled because it does not match battery (12V vs. 24V)		
8	0x08	Alarm Invalid Settings	Charger disabled because jumper setting is not correct		
9	0x09	Alarm J1939 Inactive	J1939 enabled, but no bus access (did not obtain an address)		
10	0x0A	Alarm Thermal Foldback	Available output is reduced because of high temperature		
11	0x0B	Alarm No Temperature Probe	Battery temperature probe is not connected		

Bit Ac	ddress	Name	Description
12	0x0C	Alarm Current Limiting	Operating in current limit mode (below output voltage set point)
13	0x0D	Alarm Ground Fault Positive	Ground fault alarm enabled and positive ground detected
14	0x0E	Alarm Low Current	Low current alarm enabled and output below alarm threshold
15	0x0F	Alarm Load Share Fault	Charger fails to provide its share of the output current
16	0x10	Alarm J1939 Inactive	J1939 enabled, but no bus access (did not obtain an address)
17	0x11	Alarm MODbus inactive	MODbus enabled, but no network activity detected
18	0x12	Alarm SENSbus Inactive	Display board is not receiving any charger data
19	0x13	Alarm Battery On Discharge	Battery in range where discharge occurs (below open circuit voltage)
20	0x14	Alarm Battery End Discharge	Battery voltage below safe discharge range threshold
21	0x15	Alarm Ground Fault Negative	Ground fault alarm enabled and negative ground detected
22	0x16	Alarm DC Negative Open	Charger disabled because common negative lead is open
23	0x17	Alarm Spare 23	Spare bit, available for future use, reads false (Off, 0)
24	0x18	Alarm Spare 24	Spare bit, available for future use, reads false (Off, 0)
25	0x19	Alarm Load Disconnect	Load relay open: set at "end discharge", clear when not "on discharge"
26	0x1A	Alarm Individual Unit Fault	Alarm flag 32-54 active for one, but not all, chargers in any Output
27	0x1B	Alarm Battery Check	Battery check failed
28	0x1C	Alarm Circuit Breaker	Circuit breaker monitor contacts are active (if present)
29	0x1D	Alarm Surge Arrestor	Surge arrestor monitor contacts are active (if present)
30	0x1E	Alarm Load Relay Control	Enable load control relay (if present)
31	0x1F	Alarm Vent Fan Control	Enable battery vent fan (if present)

11.4. Extended Status Bit Definition

Bit Ad	dress	News	Description
Decimal	Hex	- Name	Description
0	0x00	Output Idle	Charger output is disabled
1	0x01	Slave Mode	Charger operating in slave mode (should not occur on system displays)
2	0x02	Helix Float Charge	Charger operating in Helix float state
3	0x03	Float Charge	Charger operating in float state
4	0x04	Helix Refresh Charge	Charger operating in Helix refresh state
5	0x05	Automatic Boost Charge	Charger operating in automatic boost state
6	0x06	Timed Boost Charge	Charger operating in timed (manual) boost state
7	0x07	Periodic Boost Charge	Charger operating in scheduled (periodic) boost state
8	0x08	Battery Check Active	Battery check cycle in progress
9	0x09	Commissioning Charge	Charger operating in commissioning charge state
10	0x0A	Spare Bit 10	Not used, reads false (Off, 0)
11	0x0B	Spare Bit 11	Not used, reads false (Off, 0)
12	0x0C	Spare Bit 12	Not used, reads false (Off, 0)
13	0x0D	Spare Bit 13	Not used, reads false (Off, 0)
14	0x0E	Spare Bit 14	Not used, reads false (Off, 0)
15	0x0F	Spare Bit 15	Not used, reads false (Off, 0)
16	0x10	Spare Bit 16	Not used, reads false (Off, 0)
17	0x11	Three Phase Input	Charger has three phase input
18	0x12	Battery Temperature Valid	Have valid remote temperature sensor reading
19	0x13	Scheduled Equalize Enabled	Scheduled boost charge cycles enabled
20	0x14	Scheduled Battery Check Enabled	Scheduled battery check cycles enabled

Bit Ad	ldress	News	Description
Decimal	Hex	- Name	Description
21	0x15	UI Passive	UI access mode is passive (no keypad)
22	0x16	OBS UI Hidden Mode	Obsolete, reads false (Off, 0)
23	0x17	UI Monitor Mode	UI access mode is monitor only (no adjustments)
24	0x18	UI Normal Mode	UI access mode is normal (standard adjustments)
25	0x19	UI Advanced Mode	UI access mode is advanced (all adjustments, including battery type and system configuration)
26	0x1A	UI Access Code Unlocked	Unlocked by UI security code (can change UI access mode and security code settings)
27	0x1B	Spare Bit 27	Not used, reads false (Off, 0)
28	0x1C	Spare Bit 28	Not used, reads false (Off, 0)
29	0x1D	Spare Bit 29	Not used, reads false (Off, 0)
30	0x1E	Multiple Outputs	More than one output is present
31	0x1F	System Display BoardDisplay board monitors all units on SENSbus (not ju in same unit)	

11.5. Writable Control Flags (Coils)

Single coil writes: 0xFF00 for ON, 0x0000 for OFF Multiple coil writes: 1 for ON, 0 for OFF

Address		Description	Deteile
Decimal	Hex	Description	Details
0	0x000	Start/stop manual boost, Default Output	ON to start, OFF to stop
1	0x001	Reset periodic boost charge schedule	ON to reset schedule, OFF is no-op
2	0x002	Start/stop battery check, Default Output	ON to start, OFF to stop
3	0x003	Reset periodic battery check schedule	ON to reset schedule, OFF is no-op
4	0x004	Clear battery check failure, Default Output	ON to reset alarm, OFF is no-op
5	0x005	Clear low cranking failure, Default Output	ON to reset alarm, OFF is no-op
16	0x010	Start/stop manual boost, Channel A	ON to start, OFF to stop
17	0x011	Reset periodic boost charge schedule	ON to reset schedule, OFF is no-op
18	0x012	Start/stop battery check, Channel A	ON to start, OFF to stop
19	0x013	Reset periodic battery check schedule	ON to reset schedule, OFF is no-op
20	0x014	Clear battery check failure, Channel A	ON to reset alarm, OFF is no-op
21	0x015	Clear low cranking failure, Channel A	ON to reset alarm, OFF is no-op
32	0x020	Start/stop manual boost, Channel B	ON to start, OFF to stop
33	0x021	Reset periodic boost charge schedule	ON to reset schedule, OFF is no-op
34	0x022	Start/stop battery check, Channel B	ON to start, OFF to stop
35	0x023	Reset periodic battery check schedule	ON to reset schedule, OFF is no-op
36	0x024	Clear battery check failure, Channel B	ON to reset alarm, OFF is no-op
37	0x025	Clear low cranking failure, Channel B	ON to reset alarm, OFF is no-op
48	0x030	Start/stop manual boost, Channel C	ON to start, OFF to stop
49	0x031	Reset periodic boost charge schedule	ON to reset schedule, OFF is no-op
50	0x032	Start/stop battery check, Channel C	ON to start, OFF to stop
51	0x033	Reset periodic battery check schedule	ON to reset schedule, OFF is no-op
52	0x034	Clear battery check failure, Channel C	ON to reset alarm, OFF is no-op
53	0x035	Clear low cranking failure, Channel C	ON to reset alarm, OFF is no-op
64	0x040	Start/stop manual boost, Channel D	ON to start, OFF to stop
65	0x041	Reset periodic boost charge schedule	ON to reset schedule, OFF is no-op
66	0x042	Start/stop battery check, Channel D	ON to start, OFF to stop
67	0x043	Reset periodic battery check schedule	ON to reset schedule, OFF is no-op
68	0x044	Clear battery check failure, Channel D	ON to reset alarm, OFF is no-op
69	0x045	Clear low cranking failure, Channel D	ON to reset alarm, OFF is no-op

12 TROUBLESHOOTING/ERROR CODES

12.1. Configuration Error Codes

Error codes are displayed on front panel LCD.

Error	Scope	Description	Corrective Action
101	Charger Module	Invalid charger position jumper setting for a charger module used in a multi-module unit. Jumpers must identify the module position: either no jumper (position 0) or a single jumper in positions 1 - 9. Not compatible with jumper-selected output settings for stand-alone chargers.	 When a charger contains multiple charger modules, each module in that unit must be set to a different position number. Install one jumper per module to select module positions 1 - 9, or no jumper to select position 0. To operate without multiple outputs, use the keypad "DC Output #" selection in the "Other Settings" menu or the setup utility to disable all outputs. Then use the "Set Output" setting in the "Other Settings" menu or the setup utility to assign all modules to the "Default" DC output.
102	Stand- alone Charger	Simultaneous use of output jumper settings and keypad control on a charger not used as a module. The keypad is enabled while the charger output is controlled by its jumper settings. Output can be either keypad controlled or jumper-selected, but not both simultaneously. Chargers not used as modules do not use jumpers to identify their installation positions.	 To operate under keypad control, remove all charger output setting jumpers. To disable keypad control, Change the "UI Access Level" setting in the "Service Tools" menu to "Monitor Only." For factory default settings install jumpers on the charger in all three Float Voltage positions or two float settings plus one Range jumper. For other standard settings install three jumpers on the charger to select the Battery Type, Float Voltage, and Range for your battery.
103	Stand- alone Charger	Inconsistent jumper settings for chargers not used as modules. When multiple stand-alone chargers operate in parallel using output jumper settings, all the chargers must have identical settings. This prevents unexpected output settings changes if the master charger (the charger with the lowest power board serial number) loses SENSbus data communication for any reason.	 For factory default settings install jumpers on the charger in all three Float Voltage positions or two float settings plus one Range jumper of every charger. For other standard settings, install three jumpers on each charger to select the Battery Type, Float Voltage and Range, using settings appropriate for your battery. All chargers must use the same settings. For keypad control (programmed settings), remove all output setting jumpers from all the chargers.
104	Charger Module	Invalid output configuration. Charger modules must be set to a valid output: either output A through D for use in multiple output units or 0 for use in single output units. Combining charger modules configured for use in single output units with those configured for multiple output units in the same unit (or system) is <u>not</u> supported.	 If necessary, enable the output using the keypad "DC Output #" selection in the "Other Settings" menu or the setup utility. To select a different output, reassign the module to match its actual output connection using the "Set DC Output" setting in the "Other Settings" menu or by using the setup utility. To operate without multiple outputs, use the keypad "DC Output #" selection in the "Other Settings" menu or the setup utility to disable all outputs. Then use the "Set DC Output" setting in the "Other Settings" menu or the setup utility to assign all modules to the "Default" DC output.
105	Charger Module	Duplicate charger location settings within a unit with multiple charger modules, not using the default output. Every charger module must have a unique location setting. Duplication is allowed for modules in different units, <i>i.e.</i> with different "Unit Serial Numbers". Modules using the "default" output do not use charger positions.	 Use a different position number (jumper setting) for each module in a multi-module unit. See Error Code 101 for more detail. When replacing a charger in a multi-module unit, set the replacement charger for the same position as the module being removed. To prevent confusion, the position jumper settings should agree with the position markings on labels, internal wiring, <i>etc.</i> (so the displayed module ID number will match its physical and electrical position).
201	Charger (or system)	No charger modules assigned to output. Every enabled charger output must have at least one module assigned to it. When none is found, it is	 Check for a module that has failed (indicated by its LED status). Check for disconnected or damaged SENSbus data

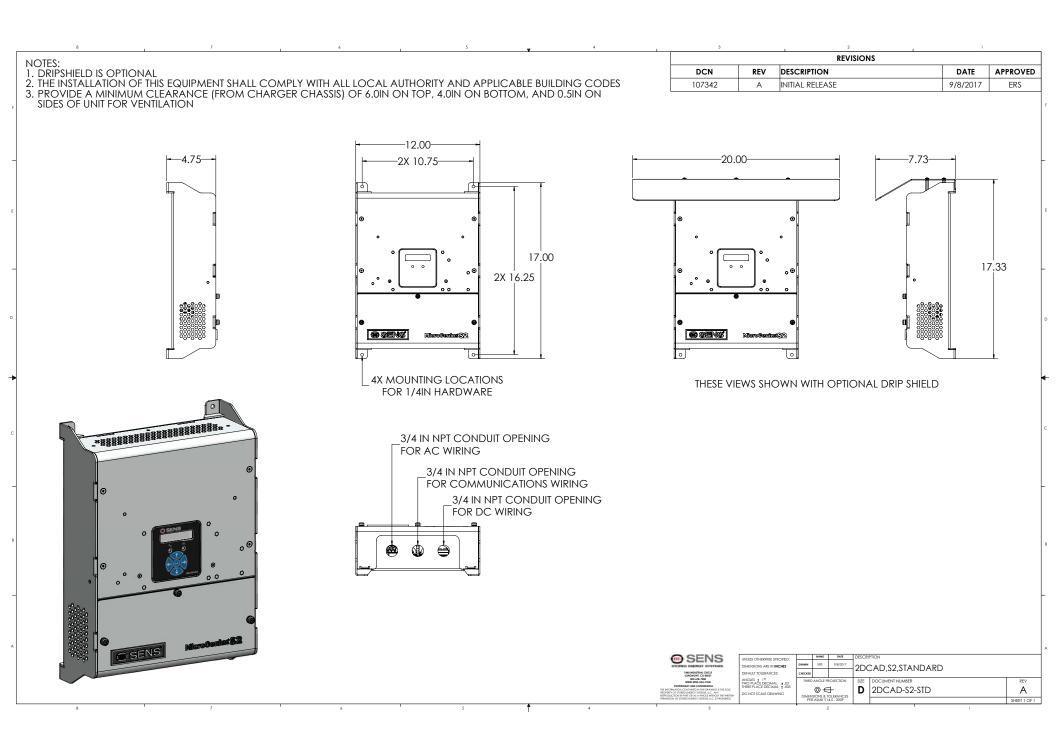
Error	Scope	Description	Corrective Action
		presumed that a module has failed, has lost SENSbus data communication, or has an incorrect output setting.	cables. - If the output is not to be used, disable it by using the keypad "DC Output #" setting in the "Other Settings" menu or the setup utility.
202	Charger (or system)	Too few charger modules operating . The combined output rating of all modules operating on this charger output is less than the rated output. This can occur because a module has failed, has an open AC input or DC output connection, has lost SENSbus data communication, or is configured for the wrong output.	 Use the "Set DC Output" setting in the "Other Settings" menu or the setup utility to verify all chargers output settings. Each module must be set for the output corresponding to its electrical DC output connection. If necessary, install additional modules to meet the required output rating (plus the additional modules needed for "N+1" or "N+2" redundant operation). Verify that each output is assigned enough modules to meet the required DC output rating (plus any extra modules needed to provide "N+1" or "N+2" redundant operation). Check for a module that has failed (indicated by its LED status). Check for disconnected or damaged SENSbus data cables. Check for miswired, disconnected, or damaged input and output connections.
203	Charger (or system)	Charger Module assigned to a disabled output . All modules must either be set for single output operation (0, Default output) or to a valid output that is enabled in this unit or system.	 To use this output, enable it using the keypad " DC Output #" selection in the "Other Settings" menu or the setup utility. Verify that the DC outputs of all modules assigned to each output are electrically connected to that output. To select a different output, reassign the module to match its actual output connection using the "Set DC Output" setting in the "Other Settings" menu or by using the setup utility. To operate without multiple outputs, use the keypad "DC Output #" selection in the "Other Settings" menu or the setup utility to disable all outputs. Then use the "Set DC Output" setting in the "Other Settings" menu or the setup utility to assign all chargers to the "Default" DC output.
301	Charger (or system)	Missing charger modules. A module that should be present is missing, has failed, or is otherwise not found on the SENSbus network. The number of modules in this system must not be less than the "Minimum System Number of Chargers" setting. This setting defines how many modules should be installed, particularly in "N+1" and "N+2" redundant configurations (where full output is possible without all modules operating). This setting normally is 0 (Off) for non-redundant systems, which disables this error check.	 Check for a module that has failed (indicated by its LED status). Check for disconnected or damaged SENSbus data cables. Use the "Minimum System Number of Chargers" selection in the "Other Settings" menu or the setup utility to verify the system charger count setting. For "N+1" or "N+2" redundant operation this should be the number of charger modules connected to the SENSbus network. Non-redundant systems normally use a 0 setting (which disables this error check) but may be set if error checking is desired.

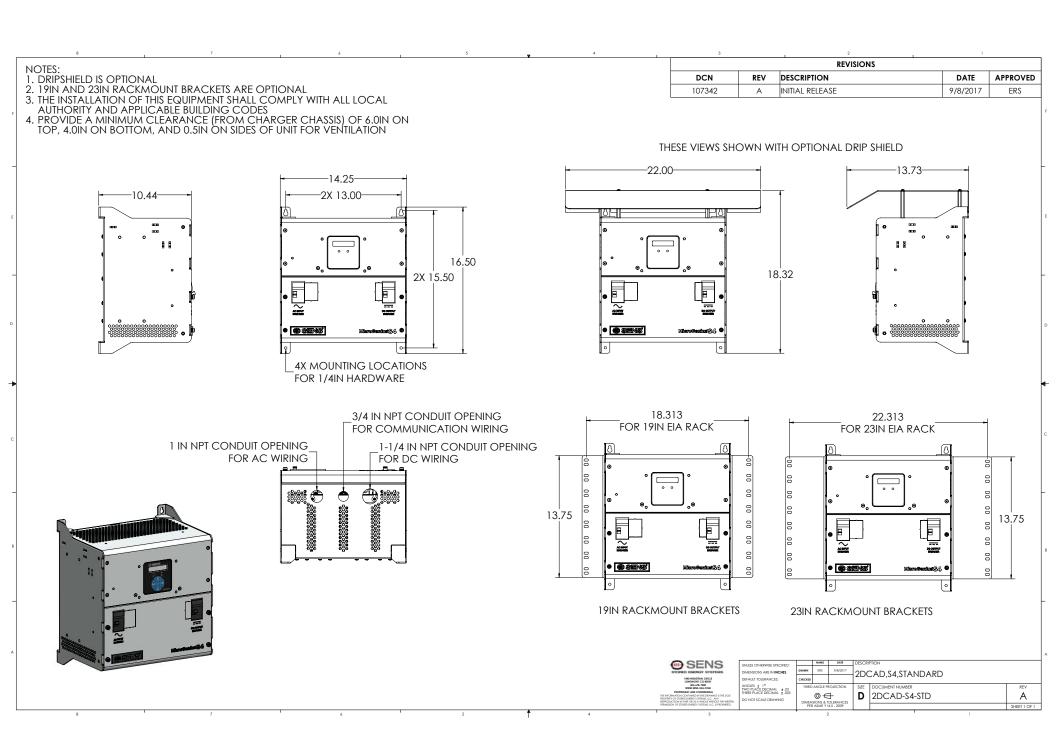
12.2. Troubleshooting

AC LED	DC LED	Symptom	Possible Causes	Recommended Actions
OFF	OFF	Both AC and DC LEDs are off and <u>display is off</u>	 Proper AC or DC voltages not applied Frozen accessory display board or main power board Main power board to accessory display board cable is incorrectly installed Main power board to accessory board cable failure or poor connection Main power board failure Accessory display board failure 	 Using a voltmeter, check that AC input voltage and frequency at AC input terminal block/breaker are in the range 80VAC – 264VAC / 47Hz – 63Hz or that >8VDC is present at DC output terminal block/breaker and that the DC polarity is correct. Correct charger AC input and DC output voltage as required. If step 1 doesn't resolve issue, remove both AC and DC power for 1 minute, then reapply power. If steps 1 and 2 don't resolve issue, determine if main power board AC and DC LEDs are on (any color). If main power board LEDs are off, remove cable between accessory display board and main power board. If main power board LEDs remain off, a main power board failure is the likely cause. Replace charger. If main power board LEDs remain off, a tresolve issue, check that the main power board to accessory display board cable is correctly installed between main power board J900 and accessory display board J1, and that both ends of the cable are fully inserted. If step 4 doesn't resolve issue, unplug the main power board to accessory display board cable is correctly and to accessory display board cable and, using an ohmmeter, check for continuity across the cable on each pin of the cable (cable is a straight pass through). If an open connection is found, replace cable (208117). If cable ohms out ok, a failed accessory display board is the likely cause. Replace accessory display board.
OFF	OFF	Both AC and DC LEDs are off and <u>display is on</u>	 Charger communication terminator is missing Failed main power board Jumper installed in address 1 or address 2 header on main power board Main power board to accessory display board cable failure Failed accessory display board 	 Verify that a terminator is installed in port 1 or 2 of main power board J901. If terminator is missing, install missing terminator. If terminator is installed, disconnect one end of the main power board to accessory display board cable. Verify that main power board AC and DC LEDs are on (any color). If main power board LEDs remain off, replace charger, main power board has most likely failed. If power board LEDs are on, make sure there are no jumpers installed in Address 1 or Address 2 on main power board header JP900. Remove any address jumpers. If step 3 doesn't resolve issue, unplug the main power board to accessory display board cable and, using an ohmmeter, check for continuity across the cable on each pin of the cable (cable is a straight pass through). If an open connection is found, replace cable (208117). If cable ohms out ok, a failed accessory display board is the likely cause. Replace accessory display board.
*SOLID GREEN	FLASH LONG- SHORT GREEN	AC LED is green, DC LED flashes Long-Short green, and output voltage is lower than expected	1. Charger is in HELIX Eco-Float mode	 Output voltage is automatically lowered to extend battery life in the HELIX Eco-Float mode. Charger will automatically refresh the battery as required and no action is needed (this is normal operation). If a customer wishes to disable HELIX mode, use a battery type other than FLA, disable it using the Setup Utility, or disable it via the option keypad.
*SOLID GREEN	FLASH LONG- SHORT- SHORT GREEN	AC LED is green, DC LED flashes Long-Short-Short green, and output voltage is higher than expected float voltage	1. Charger is in HELIX REFRESH mode	 Charger will automatically refresh the battery as required and no action is needed (this is normal operation). If a customer wishes to disable HELIX mode, use a battery type other than FLA, disable it using the Setup Utility, or disable it via the option keypad.
*SOLID GREEN	FLASH or SOLID GREEN	Unable to Communicate using J1939	 Charger address is not correct No communication bus termination installed 	1. Verify that Battery Charger (BCH) 1 or Battery Charger (BCH) 2 (depending on selected address) is the correct address for desired output. Correct

AC LED	DC LED	Symptom	Possible Causes	Recommended Actions
			 Communication cable is plugged into the wrong charger port Wiring is incorrect Unsupported or incorrect J1939 command Incorrect address or address conflict 	 using the keypad if incorrect address. 2. Verify that a terminator is installed in port 1 or 2 of display board J2 (note that a terminator is not required if the charger is not at the end of the communication bus). 3. If step 3 didn't resolve the issue, verify that communication cable is connected to port 1 or port 2 of J2 on the display board. Correct cabling as required. 4. If communication cable is connected correctly, verify that cabling is correct and the J1939 Data High goes to pin 1 of J2 and that J1939 Data Low goes to pin 2 of J2. 5. If cable wiring is correct, verify that requested command is supported by SENS charger per J1939 table in charger manual. 6. Check for address conflicts on the network
*SOLID GREEN	FLASH or SOLID GREEN	Basic J1939 communications work but SENS extended commands don't work	1. SENS extended J1939 commands are not enabled	1. Enable SENS extended J1939 commands using setup utility
*SOLID GREEN	FLASH or SOLID GREEN	Unable to Communicate using MODBUS	 No communication bus termination installed Communication cable is plugged into the wrong charger port Wiring is incorrect Incorrect MODBUS settings (baud rate, type (RTU or ASCII), address) 	 Verify that a terminator is installed in port 1 or 2 of display board J2 (note that a terminator is not required if the charger is not at the end of the communication bus). If terminator is installed, verify that communication cable is connected to port 1 or port 2 of J2 on the display board. Correct cabling as required. If cable is connected correctly, verify that cabling is correct and that Modbus +D1 (A) goes to pin 5 of J2 and that Modbus –D0 (B) goes to pin 4 of J2. If cable wiring is correct, verify that charger and application MODBUS settings are as required. Adjust settings using setup utility as required.
*SOLID GREEN	SOLID RED	AC good, charger fail or overvoltage shutdown	 Charger has experienced an unexpected fault Programmed setting are incorrect (OVSD set too low) Charger module failure 	 Remove both AC and DC power for 1 minute, then reapply power. If fault remains, check overvoltage shutdown settings and again remove both AC and DC power for 1 minute, then reapply power. If steps 1 and 2 don't resolve issue, a charger module failure is the likely cause. Replace module.
*SOLID GREEN	FLASHING RED/YELL OW	Charger's output is not enabled	1. A battery is connected to the charger output with reverse polarity	1. Correct DC polarity applied to DC output terminal block/breaker.
*SOLID GREEN	SOLID YELLOW	AC good, high battery voltage	 Alarm setpoint incorrect for application DC voltage is high due to an external source such as an alternator 	 Check that charger battery settings and alarms are set appropriately for the application and battery under charge. If settings and alarms are correct, check and correct battery / load voltage (consider battery surface charge, alternator, and any connected equipment).
*SOLID GREEN	SOLID YELLOW	AC good, low battery voltage	 Alarm setpoint incorrect for application Battery discharged or defective 	 Check that charger battery settings and alarms are set appropriately for the application and battery under charge. If settings and alarms are correct, check and correct battery / load voltage (consider loads and any connected equipment).
*SOLID GREEN	FLASHING GREEN/ RED	AC good, system DC output good, some individual charger module(s) in alarm state	1. One or more system chargers has an alarm.	1. Troubleshoot issue using fault code from individual charger module(s).
*SOLID GREEN	FLASHING YELLOW	AC good, low incompatible battery error (charger disabled)	1. Voltage range improperly set	 Check that charger voltage range is set correctly for the battery. After making any correction to the range setting, remove both AC and DC power for 1 minute, then reapply power.
*SOLID GREEN	FLASHING GREEN/YE	AC good, output power limited	1. Charger power is reduced to protect charger due to high	1. Reduce operating environment temperature. Charger will automatically increase power as

AC LED	DC LED	Symptom	Possible Causes	Recommended Actions	
	LLOW		temperatures	temperature is lowered.	
*SOLID GREEN	DOUBLE FLASH YELLOW	AC good, load share fail	1. Charger output settings do not match between chargers	 Check that individual charger settings are identical. Adjust as required. After making any adjustments, unplug and re-plug SENSbus cable from charger. 	
*SOLID GREEN	DOUBLE FLASH RED	AC good, output disabled	 Negative DC connection is broken to one of the chargers Too many devices on the SENSbus network 	 Check that the negative DC connection is made and that connection is tight. If step 1 doesn't resolve issue, look for break in the DC ground cable. If steps 1 and 2 don't resolve the issue, ensure that less than max allowed number of devices is on the SENSbus. If none of the above steps resolved the issue, a failed display board is likely, replace display board. 	
SOLID RED	SOLID GREEN	AC fail, battery voltage good	 Proper AC voltages or frequency not applied Charger module failure 	 Using a voltmeter, check that AC input voltage and frequency at AC input terminal block/breaker are in the range 80VAC – 264VAC / 47Hz – 63Hz. Correct charger AC input voltage as required If step 1 doesn't resolve issue, a charger module failure is the likely cause. Replace module. 	
SOLID RED	SOLID YELLOW	AC fail, high battery voltage	 Proper AC voltages or frequency not applied Charger module failure And Alarm setpoint incorrect for application DC voltage is high due to an external source such as an alternator 	 AC LED 1. Using a voltmeter, check that AC input voltage and frequency at AC input terminal block/breaker are in the range 80VAC – 264VAC / 47Hz – 63Hz or that > 8VDC is present at DC output terminal block/breaker and that the DC polarity is correct. Correct charger AC input and DC output voltage as required. 2. If step 1 doesn't resolve RED AC light, remove both AC and DC power for 1 minute, then reapply power. 3. If steps 1 and 2 don't resolve RED AC light, a charger module failure is the likely cause. Replace module. DC LED 4. Check that charger battery settings and alarms are set appropriately for the application and battery under charge. 5. If settings and alarms are correct, check and correct battery / load voltage (consider battery surface charge, alternator, and any connected equipment). 	
SOLID RED	SOLID YELLOW	AC fail, low battery voltage	 Proper AC voltages or frequency not applied Charger module failure And Alarm setpoint incorrect for application Battery discharged or defective 	 AC LED AC LED Using a voltmeter, check that AC input voltage and frequency at AC input terminal block/breaker are in the range 80VAC – 264VAC / 47Hz – 63Hz or that > 8VDC is present at DC output terminal block/breaker and that the DC polarity is correct. Correct charger AC input and DC output voltage as required. If step 1 doesn't resolve RED AC light, remove both AC and DC power for 1 minute, then reapply power. If steps 1 and 2 don't resolve RED AC light, a charger module failure is the likely cause. Replace module. DC LED Check that charger battery settings and alarms are set appropriately for the application and battery under charge. If settings and alarms are correct, check and correct battery / load voltage (consider loads and any connected equipment). If fault remains after the above steps, check battery health. Replace battery if weak. 	
SOLID RED	SOLID RED	AC fail, charger fail or overvoltage shutdown	 Charger is in a fault state Charger module failure 	AC LED 1. Using a voltmeter, check that AC input voltage and frequency at AC input terminal block/breaker	


SENS MicroGenius S2/S4 Technical Manual


AC LED	DC LED	Symptom	Possible Causes	Recommended Actions
				 are in the range 80VAC - 264VAC / 47Hz - 63Hz or that > 8VDC is present at DC output terminal block/breaker and that the DC polarity is correct. Correct charger AC input and DC output voltage as required. 2. If step 1 doesn't resolve RED AC light, remove both AC and DC power for 1 minute, then reapply power. 3. If steps 1 and 2 don't resolve RED AC light, a charger module failure is the likely cause. Replace module.
				 DC LED 4. Remove AC and DC power from charger for 1 minute before reapplying power. Ensure AC voltage and/or DC voltage is within specified operating limits of the charger. 5. If fault remains, check overvoltage shutdown settings and again remove both AC and DC power for 1 minute, then reapply power. 6. If steps 1 and 2 don't resolve issue, a charger module failure is the likely cause. Replace module.
SOLID RED	FLASHING YELLOW	AC fail, low incompatible battery error	 Proper AC voltages or frequency not applied Charger module failure And Voltage improperly set 	 AC LED 1. Using a voltmeter, check that AC input voltage and frequency at AC input terminal block (J100) are in the range 80VAC – 264VAC / 47Hz – 63Hz or that >8VDC is present at DC output terminal block/breaker and that the DC polarity is correct. Correct charger AC input and DC output voltage as required. 2. If step 1 doesn't resolve RED AC light, remove both AC and DC power for 1 minute and then reapply power. 3. If steps 1 and 2 don't resolve RED AC light, a charger module failure is the likely cause. Replace module. DC LED 4. Check that charger voltage is set correctly for the battery. After making any correction to the setting, remove both AC and DC power.
ALTERNATING FLASHING YELLOW		No output	1. Illegal configuration	1. Ensure that charger has been programmed to desired and allowable settings.
	NATING NG RED	No output	1. Missing or invalid code (boot load required)	 Update charger firmware using setup utility. If step 1 doesn't resolve issue or setup utility is not available, replace charger
ALTERNATING FLASHING GREEN		Starting-up	1. Charger is still powering-on 2. Failed display board	 Remove both AC and DC power for 1 minute and then reapply power. Allow charger at least 1 minute to fully boot. If step 1 doesn't resolve issue, a display board failure is the likely cause. Replace display board.

*AC LED will flash green when charger is in ultracapacitor mode.

13 GLOSSARY

Original Factory Configuration	Configuration set at the factory. Charger operates using settings configured at the factory per customer order. See configuration details on inside cover label.
Float Voltage	Float output voltage is used to maintain batteries in a fully charged state and prevents a fully charged battery from becoming overcharged.
Boost Voltage	A higher output voltage used to quickly recharge batteries and ensure that all battery cells in a battery string are charged to the same level. "Boost" and "Equalize" (see below) are often used synonymously, however, "Boost" is employed most frequently in the context of <u>accelerating the</u> <u>recharge of a fully or partially discharged battery that is</u> <u>periodically discharged</u> . The MicroGenius S2/S4 chargers use the term "Boost" for the higher output voltage mode (see section <u>9.3</u>)
Equalize Voltage	A higher output voltage used to quickly recharge batteries and ensure that all battery cells in a battery string are charged to the same level. "Boost" (see above) and "Equalize" are often used synonymously, however, "Equalize" is employed most frequently in the context of <u>optimizing the</u> <u>maintenance of an already charged battery that is primarily</u> <u>charged using Float voltage.</u>
Battery Type	Indicates the type of battery being charged. Battery type is selected when ordering charger and may be adjusted using the front panel keypad. Supported battery types include flooded lead-acid, absorbed glass mat (AGM), valve-regulated lead-acid, nickel-cadmium and ultracapacitors.
Configuration Code	Indicates charger output voltage configuration. Configuration code is included on the inside cover label.
SAE J1939 (CANbus)	J1939 is a communications protocol provided by SAE International and used in the commercial vehicle area for communication between the charger and genset controller.
Modbus	Modbus is an application layer messaging protocol provided by Modbus Organization and used for client/server communication. Modbus is provided over RS-485 in ASCII or RTU mode or over TCP/IP as an option.

Confirmation of Product Type Approval

Company Name: STORED ENERGY SYSTEMS, LLC

Address: 1840 INDUSTRIAL CIRCLE CO 80501 United States

Product: Battery Charger

Model(s): MicroGenius S2 and S4

Endorsements:

Certificate Type	Certificate Number	Issue Date	Expiry Date
Product Design Assessment (PDA)	18-HS1717491-PDA	15-MAR-2018	14-MAR-2023
Manufacturing Assessment (MA)	18-SF3499070	21-MAY-2018	30-MAY-2023
Product Quality Assurance (PQA)	NA	NA	NA

Tier

3 - Type Approved, unit certification not required

Intended Service

Marine and Offshore Applications

Description

MicroGenius S2 and S4: Switchmode, regulated, filtered, microprocessor-controlled, current limited battery charger designed for heavy-duty industrial service.

Primary application: quick recharge and long-life maintenance of engine start batteries and ultracapacitors.

Ratings

Output Voltage:12 or 24 VDC Nominal

Output Current::16-60 Amps

Input Voltage: 90-265VAC

Input Frequency: 47/63 Hz

Input Current: S2: 8Amps Max (at 100 VAC), S4: 16 Amps Max (at 100 VAC)

Operational temperature meets full specification: -40 °C to +40 °C

Enclosure: IP 22 aluminum/stainless steel enclosure

Service Restrictions

- Unit Certification is not required for this product. If the manufacturer or purchaser request an ABS

Certificate for compliance with a specification or standard, the specification or standard, including inspection standards and tolerances, must be clearly defined.

- Not suitable for installation in hazardous areas.

Comments

- The Manufacturer has provided a declaration about the control of, or the lack of Asbestos in this product.

- End user must use output cables that have sufficient current carrying capacity as per ABS Steel Vessel Rules 4-8-2/7.7.1.

Notes, Drawings and Documentation

Drawing No. COMPLIANCE SPEC MicroGenius S2 and S4, Pages:4

Drawing No. 2DCAD-S2-STD, 2DCAD, S2, STANDARD, Revision: A, pages:1

Drawing No. 2DCAD-S4-STD, 2DCAD, S4, STANDARD, Revision: A, pages:1

Drawing No. ABS alarm reqs mapped to S2 and S4 charger, Pages:1

Drawing No. MG2_ABS_Discharge_2016-09-09, MG2_ABS_Discharge

Drawing No. MG2_ABS_Recharge_2016-09-09, MG2_ABS_Recharge

Drawing No. S2_ABS_Discharge_2017_09_22, S2_ABS_Discharge

Drawing No. S2_ABS_Recharge_2017_09_25, S2_ABS_Recharge

Drawing No. S4_ABS_Disharge_200Ahr_2017_09_19, S4_ABS_Disharge_200Ahr

Drawing No. S4_ABS_Recharge_200Ahr_2017_09_20, S4_ABS_Recharge_200Ahr

Drawing No. S4_ABS_Disharge_310Ahr_2017_10_03, S4_ABS_Disharge_310Ahr

Drawing No. S4_ABS_Recharge_310Ahr_2017_10_04, S4_ABS_Recharge_310Ahr

Drawing No. MicroGenius_S2_and_S4_Model_Series_Designation, pages:2

Drawing No. SENS S2 IP22 Test, MICROGENIUS S2 IP22 DRIP AND SOLD INTRUSION TEST, pages:15

Drawing No. SENS S4 IP22 Test, MICROGENIUS S4 IP22 DRIP AND SOLD INTRUSION TEST, pages:13

Drawing No. UL_Reverse_Polarity_Test_S2_and_S4, pages:2

Drawing No. 04104611, ISO_Platinum_Cert_2008, pages:1

Drawing No. ISO_Surveillance Report_2017, SURVEILLANCE REPORT, pages:6

Drawing No. SENS NofA-4788116939-Sep-28-2017, NOTICE OF COMPLETION AND AUTHORIZATION TO APPLY THE UL MARK, pages:1

Drawing No. MicroGenius_S2_and_S4, pages:128

Drawing No. Form-308_MGS_EC_Decl_of Con_RevA-signed, EC Declaration of Conformity, pages:1

Term of Validity

This Product Design Assessment (PDA) Certificate remains valid until 14/Mar/2023 or until the Rules

and/or Standards used in the assessment are revised or until there is a design modification warranting design reassessment (whichever occurs first).

Acceptance of product is limited to the "Intended Service" details prescribed in the certificate and as per applicable Rules and Standards.

This Certificate is valid for installation of the listed product on ABS units which exist or are under contract for construction on or previous to the effective date of the ABS Rules and standards applied at the time of PDA issuance. Use of the Product for non-ABS units is subject to agreement between the manufacturer and intended client.

ABS Rules

The Rules for Conditions of Classification, Part 1 2018 Steel Vessels Rules 1-1-4/7.7, 1-1-A3, 1-1-A4, which covers the following:

2018 Steel Vessel Rules: 4-8-3/1.11.1, 4-8-3/5.9;

2018 Offshore Support Vessels Rules: 4-8-3/1.11.1, 4-8-3/5.9;

2018 Steel Vessels Under 90M length: 4-6-3/3.1.1(a), 4-6-4/7.19.

The Rules for Conditions of Classification, Part 1 2018 Offshore Units and Structures 1-1-4/9.7, 1-1-A2, 1-1-A3, which covers the following:

2018 Mobile Offshore Drilling Unit Rules: 4-3-3/3.1.1(a), 6-1-7/9.17.

International Standards

CSA 22.2 No. 107.2 (2011), Battery Chargers (UL File E109740);

IEC 60529 Degrees of Protection Provided by Enclosures (IP Code), 1989+A1:1999;

EN 61000-6-4: 2007+A1:2011 Electromagnetic compatibility (EMC). Generic standards;

EN 61000-6-2: 2005 Electromagnetic compatibility (EMC). Generic standards. Immunity for industrial environments.

EU-MED Standards

National Standards

UL 1236 Battery Chargers for Charging Engine-Starter Batteries, Edition 8 (UL File E109740 and EX6409)

Government Standards

Other Standards

14 11

Corporate ABS Programs American Bureau of Shipping

Print Date and Time: 15-Jul-2022 4:07

ABS has used due diligence in the preparation of this certificate, and it represents the information on the product in the ABS Records as of the date and time the certificate is printed.

If the Rules and/or standards used in the PDA evaluation are revised or if there is a design modification (whichever occurs first), a PDA revalidation may be necessary.

The continued validity of the MA is dependent on completion of satisfactory audits as required by the ABS Rules. The validity of both PDA and MA entitles the product to receive a **Confirmation of Product Type Approval**.

Acceptance of product is limited to the "Intended Service" details prescribed in the certificate and as per applicable Rules and Standards.

This Certificate is valid for installation of the listed product on ABS units which exist or are under contract for construction on or prior to the effective date of the ABS Rules and standards applied at the time of PDA issuance. ABS makes no representations regarding Type Approval of the Product for use on vessels, MODUs or facilities built after the date of the ABS Rules used for this evaluation.

Type Approval requires Drawing Assessment, Prototype Testing and assessment of the manufacturer's quality assurance and quality control arrangements. The manufacturer is responsible to maintain compliance with all specifications applicable to the product design assessment. Unless specifically indicated in the description of the product, certification under type approval does not waive requirements for witnessed inspection or additional survey for product use on a vessel, MODU or facility intended to be ABS classed or that is presently in class with ABS.

Due to wide variety of specifications used in the products ABS has evaluated for Type Approval, it is part of our contract that; whether the standard is an ABS Rule or a non-ABS Rule, the Client has full responsibility for continued compliance with the standard.

Questions regarding the validity of ABS Rules or the need for supplemental testing or inspection of such products should, in all cases, be addressed to ABS.

EC Declaration of Conformity In accordance with EN ISO 17050-1:2004

Manufacturer:	Stored Energy Systems
Manufacture Address:	1840 Industrial Circle Longmont, CO 80501 U.S.A.
Product Type:	MicroGenius S2/S4 Battery Charger
Model Numbers:	SX-YYY-YYYYYYY, where X = 2 or 4; Y = any digit;
Conformance to Directives:	Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast)
	Directive 2014/35/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits (recast)
	Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances.
Harmonized and/or technical specifications	Directive 2014/30/EU (EMC) EN 61000-6-2:2019
applied in full:	EN 61000-6-4:2019 – Class A
	Directive 2014/35/EU (LVD) EN 60335-1:2012/A13:2017 EN 60335-2-29:2004/A2:2010
	Directive 2015/863 (RoHS) EN 63000:2018
Place and date of first issue:	Longmont, CO USA on, February 2 2018

Under the sole responsibility of Stored Energy Systems, the undersigned hereby declares that the equipment specified above conforms to the essential requirements of the above Directives(s) and Standard(s).

Sam Coleman **Compliance Manager** Stored Energy Systems, LLC

September 1, 2021_ Date

SENS Limited Warranty: NRG and MicroGenius® Battery Chargers

What is covered?

This warranty covers any defect in material and workmanship on NRG and MicroGenius battery chargers manufactured by Stored Energy Systems, a Colorado Limited Liability Company (SENS).

What this warranty does not cover:

This warranty does not cover damages, defects or failures of your equipment resulting from shipping damage, accidents, installation errors, unauthorized adjustment or repair, unauthorized third-party service, failure to follow instructions, misuse, fire, flood, electrical transients, acts of persons not in our control, and acts of God.

For how long:

<u>MicroGenius LE</u>: One year from date of shipment. <u>MicroGenius 2, S2, NRG</u>: Three (3) years from date of shipment <u>MicroGenius S4</u>: Five (5) years from date of shipment except for the modules which are covered for three (3) years.

What we will do:

If your battery charger is defective within the warranty period, we will repair it or, at our option, replace it at no charge to you.

If we choose to replace your charger, we may replace it with a new or refurbished one of the same or similar design. The repair or replacement will be warranted for the remainder of the original warranty period. If we determine that your charger cannot be repaired or replaced, we will refund its purchase price to you.

What we ask you to do:

Contact SENS service department to obtain warranty service instructions. To obtain warranty service the product must be returned, freight prepaid, to the factory under a Return Material Authorization (RMA) number provided by SENS. If, in SENS' opinion, the problem can be rectified in the field, SENS may elect to ship replacement parts for customer installation instead of having the product returned to the factory.

Limitation:

This warranty is limited to defects in material or workmanship of the product. It does not cover replacement of consumables such as surge protective devices, unless defective. It does not cover loss of time, inconvenience, property damage or any consequential damages. Repair, replacement or refund of the purchase price of the equipment is your exclusive remedy.

Extended Warranty: NRG and MicroGenius Battery Chargers

Extended Warranty Period

At any time during the standard Limited Warranty period, customer may purchase extended warranty to lengthen the warranty period to 5 or 10 years from date of original shipment. All other terms of SENS Limited Warranty (see above) apply. Extended warranty not available for MicroGenius LE.

5-year extended warranty is included at no extra cost when SENS Commissioning Services are ordered at the time of charger purchase.